• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The YY1 transcription factor is a component of ribonucleoprotein complexes in xenopus laevis oocytes and embryos.

Ficzycz, Andrew Douglas 17 April 2003
Yin Yang 1 (YY1) is a multifunctional transcription factor that is known mainly for its ability to activate or initiate transcription of a wide assortment of genes involved in cellular growth and differentiation. <i>Xenopus laevis </i>oocytes and embryos were used as a model to identify and characterize a potential developmental role for YY1. Northern and Western blots of oocyte and embryonic extracts showed YY1 mRNA and protein is expressed from the earliest stages of oocyte development through to tadpole stages. Examination of the transcriptional activity of YY1 in both oocytes and embryos using reporter gene constructs containing YY1-binding elements demonstrated that YY1 does not act as a repressor or activator of transcription either in oocytes or in embryos. Sub-cellular fractionation of oocytes and Western blot analysis showed YY1 is localized almost exclusively to the cytoplasm of oocytes and in cells of early embryos. Sequence analysis of YY1 revealed that it contains an established RNA binding motif located within the zinc fingers. A series of biochemical assays were performed to address the possibility that YY1 functions as a component of mRNPs in the oocyte cytoplasm. RNA gel mobility shift analyses using in vitro synthesized histone H2A transcripts and supershifts using YY1-specific antibodies suggested that YY1 or YY1-containing complexes in cytoplasmic extracts were able to bind RNA. Chromatographic analysis of oocyte lysates showed YY1 was specifically retained on oligo (dT) cellulose columns. Treatment of the same lysates with RNase abolished binding to oligo (dT), indicating that retention is dependent on the presence of intact polyadenylated RNAs. This suggested that YY1 may be a component of messenger ribonucleoprotein particles (mRNP). Separation of oocyte lysates by size exclusion chromatography (SEC) revealed that YY1 was present in large complexes with an approximate molecular mass of 480 kDa. RNase or phosphatase treatment of oocyte extracts released YY1 from high mass complexes. Analysis of phosphatase or RNase-treated extracts for DNA binding activity showed that monomeric YY1 was able to bind DNA with high affinity. Immunoprecipitation of YY1 complexes followed by cDNA synthesis and sequencing revealed that YY1 is associated with both ribosomal and messenger RNAs in the cytoplasm of the oocyte. These results indicate a novel function for YY1 as a component of messenger ribonucleoprotein particles.
2

The YY1 transcription factor is a component of ribonucleoprotein complexes in xenopus laevis oocytes and embryos.

Ficzycz, Andrew Douglas 17 April 2003 (has links)
Yin Yang 1 (YY1) is a multifunctional transcription factor that is known mainly for its ability to activate or initiate transcription of a wide assortment of genes involved in cellular growth and differentiation. <i>Xenopus laevis </i>oocytes and embryos were used as a model to identify and characterize a potential developmental role for YY1. Northern and Western blots of oocyte and embryonic extracts showed YY1 mRNA and protein is expressed from the earliest stages of oocyte development through to tadpole stages. Examination of the transcriptional activity of YY1 in both oocytes and embryos using reporter gene constructs containing YY1-binding elements demonstrated that YY1 does not act as a repressor or activator of transcription either in oocytes or in embryos. Sub-cellular fractionation of oocytes and Western blot analysis showed YY1 is localized almost exclusively to the cytoplasm of oocytes and in cells of early embryos. Sequence analysis of YY1 revealed that it contains an established RNA binding motif located within the zinc fingers. A series of biochemical assays were performed to address the possibility that YY1 functions as a component of mRNPs in the oocyte cytoplasm. RNA gel mobility shift analyses using in vitro synthesized histone H2A transcripts and supershifts using YY1-specific antibodies suggested that YY1 or YY1-containing complexes in cytoplasmic extracts were able to bind RNA. Chromatographic analysis of oocyte lysates showed YY1 was specifically retained on oligo (dT) cellulose columns. Treatment of the same lysates with RNase abolished binding to oligo (dT), indicating that retention is dependent on the presence of intact polyadenylated RNAs. This suggested that YY1 may be a component of messenger ribonucleoprotein particles (mRNP). Separation of oocyte lysates by size exclusion chromatography (SEC) revealed that YY1 was present in large complexes with an approximate molecular mass of 480 kDa. RNase or phosphatase treatment of oocyte extracts released YY1 from high mass complexes. Analysis of phosphatase or RNase-treated extracts for DNA binding activity showed that monomeric YY1 was able to bind DNA with high affinity. Immunoprecipitation of YY1 complexes followed by cDNA synthesis and sequencing revealed that YY1 is associated with both ribosomal and messenger RNAs in the cytoplasm of the oocyte. These results indicate a novel function for YY1 as a component of messenger ribonucleoprotein particles.
3

Investigation and Characterisation of Protein-Ligand Interactions: SRA-Ribonucleic Acid Recognition and Anti-Microbial Drug Discovery

Davis, Caroline M. 10 September 2015 (has links)
No description available.
4

Nature du complexe viral impliqué dans le mouvement à longue distance du virus de la jaunisse du navet / Nature of the viral complex involved in the long distance movement of Turnip yellows virus

Hipper, Clémence 20 September 2013 (has links)
Le projet de thèse consistait à étudier le mouvement du Virus de la jaunisse du navet (TuYV) dans le système vasculaire. Le premier objectif était d’identifier la nature du complexe viral cheminant dans les tubes criblés : virions et/ou complexes ribonucléoprotéiques. L’analyse du mouvement de mutants viraux dans différentes espèces végétales, en absence ou en présence de protéines de capside de type sauvage apportées en trans, a permis de démontrer une étroite relation entre la formation de virions et le transport à longue distance. Le second objectif de cette étude portait sur l’identification de partenaires cellulaires de la protéine P4 du TuYV. Deux protéines ont été identifiées par un criblage de banques d’ADNc d’A. thaliana par le système du double hybride dans la levure, et l’analyse de leur implication dans le cycle viral a été amorcée par des expériences de localisation subcellulaire et de validation fonctionnelle in planta. / In the project, Turnip yellows virus (TuYV) transport in the phloem was analysed. The first objective was to identify the nature of the viral complex involved in vascular movement: virions and/or ribonucleoprotein complexes. Mutant viruses were modified in the capsid protein gene to inhibit formation of virions. By analyzing their movement in different host plants, in the absence or in the presence of the wild-type capsid proteins brought in trans, we demonstrated a strong relation between virion formation and virus long-distance movement. The second objective was to identify cellular partners of the TuYV-P4 protein, a putative movement protein which is host-specific. Two proteins were identified by screening a cDNA library of A. thaliana using the yeast two hybrid technique, and their function in the virus cycle was assessed by performing sub-cellular localizations and infection of A. thaliana KO mutants.

Page generated in 0.0777 seconds