• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular biology of maize streak virus movement in maize

Liu, Huanting January 1997 (has links)
No description available.
2

PROPERTIES OF THE TOMBUSVIRUS MOVEMENT PROTEIN AND RNAi SUPPRESSOR THAT INFLUENCE PATHOGENESIS

Hsieh, Yi-Cheng 16 January 2010 (has links)
Tomato bushy stunt virus (TBSV) provides a good model system to investigate molecular virus-host interactions in plants. P22 and P19 proteins encoded by TBSV contribute to multiple invasion-associated functions. Green fluorescence-mediated visualization of TBSV invasion in this study suggests that virus exit from inoculated epidermal cells is a crucial event. Close examination of one P22 mutant showed that it had lost the capacity to move between epidermis and mesophyll which was possibly due to an altered subcellular localization. P19 is a potent suppressor of RNA interference (RNAi) in various systems by forming dimers that bind 21-nucleotide (nt) duplex siRNAs (short interfering RNAs), to affect the programming of the RNA-induced silencing complex (RISC). P19 is attractive for biotechnological and research purposes to prevent RNAi of certain value-added genes in plants. To obtain a good plant-based expression platform, a suppression-active mutant P19 was expressed in transgenic N. benthamiana lines. This is the first example of P19 accumulating to detectable levels in a transgenic plant and initial results suggest it is actively suppressing RNAi. Furthermore, to investigate the correlation between siRNA binding of P19 and its various biological roles, predicted siRNA-interacting sites of TBSV P19 were modified, and the corresponding TBSV mutants were used to inoculate plants. Substitutions on siRNA-contact sites on the central domain of P19 resulted in more severe symptoms in N. benthamiana compared to those affecting peripheral regions. All tested combinations of siRNA-binding mutations were associated with reduced accumulation of total TBSV-derived siRNAs, and loss of siRNA sequestration by P19. Additionally, some modifications were found to cause RNAi-mediated disappearance of viral and host materials in N. benthamiana but not in spinach. In conclusion, exit out of epidermal cells is a key host range determinant for TBSV and particular amino acids on P22 may influence this by regulating the proper subcellular localization. Mutant P19 transgenic plants were successfully established with minor physiological effects to be applied as a platform to study RNAi and to over-express proteins. Finally, a compromised P19-siRNA binding impacts symptom development, systemic invasion, integrity of virus plus host RNA and proteins, and that all in a hostdependent manner.
3

Regulation and substrate specificity of the Git and AZAP ARTGAP families /

Cuthbert, Ellen Jebb. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Includes bibliographical references. Also available via the Internet as viewed 10 July 2008.
4

Molecular Characterization Of Movement Protein Encoded By ORF-1 Of Sesbania Mosaic Virus (SeMV)

Chowdhury, Soumya Roy 01 1900 (has links) (PDF)
No description available.
5

POTENTIAL COMPLEMENTATION OF POTATO VIRUS X MOVEMENT WITH GRAPEVINE RUPESTRIS STEM PITTING-ASSOCIATED VIRUS TRIPLE GENE BLOCK PROTEINS

Mann, Krinpreet 30 August 2011 (has links)
A movement protein Potato virus X (PVX) chimera virus (PVX.GFP(CH3)) bearing the grapevine virus Grapevine rupestris stem pitting-associated virus (GRSPaV) triple gene block proteins (TGB) (denoted P1, P2 and P3) instead of the PVX TGB was delivered into N. benthamiana and other related species by agro-inoculation. This movement protein PVX chimera virus was found to be unable to support the local and systemic movement of PVX in cis. Local and systemic movement of this PVX chimera virus was restored in trans by the dianthovirus Red clover necrotic mosaic virus (RCNMV) movement protein and by a PVX TGB rescue virus that replaced the GRSPaV TGB with the PVX TGB (PVX.GFP(Rescue)). However, a PVX TGB hybrid chimera virus (PVX.GFP(HY2)) containing PVX P1 and the GRSPaV TGB had limited cell-to-cell, but not systemic, movement.
6

Identificação de um fator do hospedeiro, RPS5A, envolvido na interação com a proteína de movimento (MP) de geminivírus / Identification of movement protein MP-intaracting host facotrs

Balmant, Kelly Mayrink 18 February 2011 (has links)
Made available in DSpace on 2015-03-26T13:42:20Z (GMT). No. of bitstreams: 1 texto completo.pdf: 2368630 bytes, checksum: cd9eaf09470bcfbf6727027ecade3b46 (MD5) Previous issue date: 2011-02-18 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The movement protein MP from bipartite geminivirus (begomovirus) facilitates the cell-to-cell and long-distance transport of viral DNA in addition to affecting viral pathogenicity. To identify host factors that interact with MP, initially a cDNA library prepared from CaLCuV (Cabbage leaf curl virus)-infected Arabidopsis leaf mRNA was generated in a pEXPAD502 vector. To select for interactions between the bait BD-MP and cDNA library-encoded proteins, double transformants (BD-MP+ cDNA-AD) were plated on medium lacking histidine but supplemented with 3-aminotriazole (3-AT). From 5 x 105 transformants screened, two clones, encoding AtEXL3 (Exordium Like 3), a cell wall protein, and AtRPS5A, ribosomal protein S5A, displayed histidine/adenine auxotrophy and activate LacZ expression, on X-gal indicator plates. Expression of a full-length RPS5A cDNA fused to the Gal4 activation domain in yeast carrying BD-MP promoted growth of the double transformants in the absence of histidine and presence of 3-AT, in addition to activating high levels of LacZ expression. Furthermore, the interaction between MP and RPS5A was confirmed in vitro by pull down assays. Analysis of RPS5A gene expression by qRT-PCR demonstrated that the accumulation of rpS5A transcripts is suppressed by geminivirus infection. Based on these results and others, a functional model for the MP-RPS5A interaction is discussed. / A proteína de movimento (MP) de geminivírus bissegmentados (begomovirus) facilita o movimento célula-célula, bem como o movimento a longas distâncias do DNA viral, além de influenciar na patogenicidade viral. Com o objetivo de identificar fatores do hospedeiro que interagem com MP, inicialmente foi construída uma biblioteca de cDNA a partir de mRNAs de folhas de Arabidopsis infectadas com CaLCuV (Cabbage leaf curl virus) no vetor pEXPAD502. Para selecionar por interações entre a proteína quimérica BD-MP e proteínas codificadas pelos cDNAs da biblioteca, transformantes duplos (BDMP+ cDNA-AD) foram plaqueados em meio deficiente de histidina e suplementados com 3-amino triazol (3-AT). De um total de 5 x 105 transformantes escrutinados, dois clones, codificando EXL3 (Exordium Like 3), uma proteína de parede celular, e RPS5A, proteína ribossomal S5A, apresentaram auxotrofia a histidina e expressão do gene repórter LacZ, em placas indicadoras de X-gal. Expressão do cDNA completo de RPS5A fusionado ao domínio de ativação de Gal-4 em leveduras, carreando BD-MP, promoveu crescimento dos transformantes na ausência de histidina e presença de 3-AT, além de ativar altos níveis de expressão de LacZ.. Além disso, a interação entre MP e RPS5A foi confirmada in vitro por ensaios de pull down. Análises de expressão do gene RPS5A por meio de qRT-PCR demonstraram que o acúmulo de seus transcritos é reprimido por geminivírus. Baseado nestes resultados e de outros, um modelo funcional para interação de MP com RPS5A é discutido.
7

Relations structure-fonctions chez la protéine multi-fonctionnelle P1 du virus de la panachure jaune du riz / Structure-function analysis of the multifunsctionnal movement protein P1 from the rice yellow mottle virus

Poignavent, Vianney 15 July 2015 (has links)
Le virus de la panachure jaune du riz (virus RYMV pour Rice Yellow Mottle Virus) infecte principalement le genre Oryza et provoque d'importants dégâts sur les cultures de riz en Afrique. Bien que son génome soit rudimentaire, ce virus code des protéines essentielles pour son maintien chez l’hôte en dépit des mécanismes de défense de la plante. Les travaux récents de l’équipe ont permis d’identifier la protéine P1 codée par ce virus comme une protéine qui pourrait, grâce à sa propriété de suppresseur de RNA silencing, permettre au virus de contourner un mécanisme de défense essentiel de l’hôte et permettre au virus de perpétuer son cycle viral. Peu de données concernant les mécanismes d’action de la protéine P1 sont disponibles à ce jour. Le travail entrepris au cours de ma thèse a donc consisté à compléter les connaissances sur la biochimie de cette protéine, à définir sa structure tridimensionnelle et à mettre à jour sa localisation sub cellulaire afin de révéler des propriétés qui pourraient nous permettre non seulement de mieux comprendre comment cette protéine opère ses fonctions mais également de définir des méthodes de lutte adéquates contre ce virus. Ainsi, je montre que la protéine P1 constitue une nouvelle famille de protéine à doigt de zinc possédant une structure 3D inédite composée d’un premier domaine impliqué dans la dimérisation de la protéine et dans des interactions avec des ligands dont certains pourraient provenir de la plante hôte. Mon travail permet également d’identifier un deuxième domaine senseur de l’état redox au sein de la protéine qui lui permet probablement de sonder l’état de la plante pendant l’infection virale et d’adapter ses conformations pour assurer ses fonctions. Finalement, une approche par mutagénèse sur la protéine P1 assistée par la nouvelle structure 3D démontre qu’il est désormais possible d’identifier les résidus essentiels à la protéine pour sa participation dans l’infection virale. Ce travail ouvre donc de nombreuses perspectives pour de futures études de mécanistique sur ces domaines-clé de la protéine, ainsi que pour des études sur sa diversité génétique au sein des très nombreux isolats du virus RYMV en Afrique. / The virus of rice yellow mottle virus (RYMV for Rice Yellow Mottle Virus) mainly infects the genus Oryza and causes significant damage to rice crops in Africa. Although its genome is rudimentary, this virus code essential proteins for its maintenance in the host despite the defense mechanisms of the plant. Recent work by the team has identified the P1 protein encoded by the virus as a protein that could, through its ownership of RNA silencing suppressor, allow the virus to bypass an essential defense mechanism of the host and allow the virus to perpetuate its viral cycle. Little data on the mechanisms of action of the P1 protein is available to date. The work undertaken during my thesis was therefore to supplement the knowledge of the biochemistry of this protein, to define its three-dimensional structure and update its sub cellular localization to reveal properties that could enable us not only to understand how this protein works its functions but also to define methods of adequate response against the virus. Thus, I show that the P1 protein is a new zinc finger protein family having a unique 3D structure consisting of a first domain involved in the dimerization of the protein and in interactions with ligands some of which may originate from the plant host. My work also identifies a second sensor field in the redox state of the protein that probably allows him to probe the state of the plant during viral infection and adapt its conformation to conduct their duties. Finally, a mutagenesis approach to P1 assisted by the new 3D protein structure shows that it is now possible to identify critical residues in the protein for its participation in the viral infection. This work thus opens up many possibilities for future mechanistic studies on these key areas of the protein, as well as for studies of genetic diversity within many RYMV isolates of virus in Africa
8

Proteínas de movimiento de la familia 30K:interacción con membranas biológicas y factores proteicos y su implicación en el transporte viral

Peiró Morell, Ana 30 March 2015 (has links)
Para que el proceso infeccioso de un virus de plantas tenga éxito la progenie viral tiene que propagarse desde las primeras células infectadas al resto de la planta; inicialmente se moverá célula a célula a través de los plasmodesmos (PDs) hasta alcanzar el sistema vascular, lo cual le permitirá invadir las partes distales de la planta. En este proceso, las proteínas de movimiento (MPs), junto con la colaboración de otros actores secundarios, desempeñan un papel relevante. El conocimiento de la posible asociación de las MPs con estructuras u orgánulos celulares así como de la interacción con factores del huésped es de vital importancia para poder desarrollar estrategias antivirales que permitan una mejora en la producción de los cultivos. Además, este tipo de estudios no sólo han posibilitado un mayor conocimiento de las respuestas al estrés en plantas sino que han sido pioneros en desentrañar los mecanismos de translocación intercelular de factores celulares implicados en los procesos de desarrollo de las plantas. Las MPs virales se clasifican en familias/grupos en función de su grado de similitud. Los virus, cuyas MPs pertenecen a la Superfamilia 30K, expresan una única MP encargada de orquestar el movimiento intra- e intercelular de genoma viral. En el Capítulo 1 de la presente Tesis se ha caracterizado la asociación de la MP del Virus del mosaico del tabaco (TMV), miembro tipo de la familia 30K, al sistema de endomembranas. Mediante el uso de aproximaciones in vivo se ha estudiado la eficiencia de inserción de sus regiones hidrofóbicas (HRs) en la membrana del retículo endoplasmático (ER). Nuestros resultados demuestran que ninguna de las dos HRs de la MP es capaz de atravesar las membranas biológicas y que la alteración de la hidrofobicidad de la primera HR es suficiente para modificar su asociación a la membrana. En base a los resultados obtenidos, proponemos un modelo topológico en el cual la MP del TMV se encontraría fuertemente asociada a la cara citosólica de la membrana del ER, sin llegar a atravesarla. La observación de que i), el modelo propuesto es compatible con otros motivos, previamente caracterizados, de la MP de TMV y ii), concuerda con la topología descrita para otras MPs de la familia 30K, permite cuestionar el modelo establecido desde el año 2000 para la MP de TMV así como predecir, en base a la conservada estructura secundaria de las MPs de esta familia, una topología similar para todos sus componentes. Para el transporte intercelular de los virus de plantas se han descrito tres modelos en base a la capacidad de transportar complejos ribonucloeprotéicos, a través de PD modificados, formados por el RNA viral y la MP (ej. MP de TMV) más la proteína de cubierta (ej. MP del virus del mosaico del pepino, CMV) o la capacidad de transportar viriones a través estructuras tubulares formadas por la MP (ej. MP del Virus del mosaico del caupí, CPMV). A pesar de las diferencias observadas entre los tres modelos, las MPs representativas de cada uno de ellos pertenecen a la misma familia 30K y son funcionalmente intercambiables (MPs de TMV, CMV, CPMV, Virus del mosaico del Bromo -BMV- o Virus de los anillos necróticos de los prunus -PNRSV-) por la MP del Virus del mosaico de la alfalfa (AMV), para el transporte a corta distancia. Con el objeto de comprender la versatilidad que presentan las MPs en cuanto al movimiento viral, hemos analizado la capacidad de estas MPs heterólogas de transportar sistémicamente el genoma quimérico del AMV. El estudio ha revelado que todas las MPs analizadas permiten el transporte del genoma quimera a las partes distales de la planta, independientemente del modelo descrito para el transporte a corta distancia, aunque requieren la extensión de los 44 aminoácidos C-terminales de la MP del AMV. Además, para todas las ellas, excepto para la MP del TMV, se ha establecido una relación entre la capacidad de movimiento local y la presencia del virus en las hojas no inoculadas de la planta, indicando la existencia de un umbral de transporte célula a célula, por debajo del cual, el virus es incapaz de invadir sistémicamente la planta. Durante el proceso de infección viral, las MPs interaccionan tanto con otras proteínas de origen viral como de la planta huésped. La interacción entre las MPs y dichos factores de la planta afectan a la patogénesis viral, facilitando u obstaculizando el movimiento intra- o intercelular del virus. En el Capítulo 3 del presente trabajo hemos demostrado la interacción entre la MP del AMV y dos miembros de la familia de Patellinas de arabidopsis, Patellin 3 (atPATL3) y Patellin 6 (atPATL6), mediante el sistema de los dos híbridos de levadura y ensayos de reconstitución bimolecular de la fluorescencia. Nuestros resultados, en general, demuestran que la interacción entre la MP-PATLs obstaculizaría un correcto direccionamiento de la MP al PD, dando lugar a un movimiento intracelular menos eficiente de los complejos virales, que forma la MP, y disminuyendo el movimiento célula a célula del virus. Podríamos estar hablando de un posible mecanismo de defensa de la planta, dirigido a evitar la invasión sistémica del huésped. En este sentido, las MPs virales pueden ser buenos candidatos para el desarrollo de estrategias antivirales dado que cualquier respuesta de defensa de la planta que, a priori, reduzca el transporte célula a célula del virus, puede representar la diferencia entre una infección local o sistémica, como hemos observado en el Capítulo 2 del presente trabajo. Los virus, a su vez, también son capaces de evolucionar hacia variantes más eficaces, que permitan superar las diferentes barreras defensivas de la planta huésped. En este contexto hemos identificado a la MP del Virus del bronceado del tomate (TSWV) como determinante de avirulencia en la resistencia mediada por el gen Sw-5. Del mismo modo, comprobamos que el cambio de 1-2 residuos de amino ácidos de la MP de TSWV fue suficiente para superar la resistencia pero que a la vez, y posiblemente debido a las altas restricciones que conlleva el reducido genoma de un virus, afectaron a la eficiencia de la MP. / Peiró Morell, A. (2014). Proteínas de movimiento de la familia 30K:interacción con membranas biológicas y factores proteicos y su implicación en el transporte viral [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48471 / TESIS
9

Nature du complexe viral impliqué dans le mouvement à longue distance du virus de la jaunisse du navet / Nature of the viral complex involved in the long distance movement of Turnip yellows virus

Hipper, Clémence 20 September 2013 (has links)
Le projet de thèse consistait à étudier le mouvement du Virus de la jaunisse du navet (TuYV) dans le système vasculaire. Le premier objectif était d’identifier la nature du complexe viral cheminant dans les tubes criblés : virions et/ou complexes ribonucléoprotéiques. L’analyse du mouvement de mutants viraux dans différentes espèces végétales, en absence ou en présence de protéines de capside de type sauvage apportées en trans, a permis de démontrer une étroite relation entre la formation de virions et le transport à longue distance. Le second objectif de cette étude portait sur l’identification de partenaires cellulaires de la protéine P4 du TuYV. Deux protéines ont été identifiées par un criblage de banques d’ADNc d’A. thaliana par le système du double hybride dans la levure, et l’analyse de leur implication dans le cycle viral a été amorcée par des expériences de localisation subcellulaire et de validation fonctionnelle in planta. / In the project, Turnip yellows virus (TuYV) transport in the phloem was analysed. The first objective was to identify the nature of the viral complex involved in vascular movement: virions and/or ribonucleoprotein complexes. Mutant viruses were modified in the capsid protein gene to inhibit formation of virions. By analyzing their movement in different host plants, in the absence or in the presence of the wild-type capsid proteins brought in trans, we demonstrated a strong relation between virion formation and virus long-distance movement. The second objective was to identify cellular partners of the TuYV-P4 protein, a putative movement protein which is host-specific. Two proteins were identified by screening a cDNA library of A. thaliana using the yeast two hybrid technique, and their function in the virus cycle was assessed by performing sub-cellular localizations and infection of A. thaliana KO mutants.

Page generated in 0.0952 seconds