Spelling suggestions: "subject:"ribose."" "subject:"fibose.""
81 |
Rôle de la poly(ADP-ribose) polymérase-1 (PARP-1) dans les réponses cellulaires aux dommages à l'ADN induits par les UV; mécanisme d'inactivation de l'interférence de l'ARN durant l'apoptose /c Medini Ghodgaonkar.Ghodgaonkar, Medini M. January 2008 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2008. / Bibliogr.: f. 250-258. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
|
82 |
The Role of Poly(ADP-ribose) polymerase-1 and NF-kappa B in the development of diabetic retinopathy /Zheng, Ling. January 2005 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2005. / [School of Medicine] Department of Pharmacology. Includes bibliographical references. Available online via OhioLINK's ETD Center.
|
83 |
Studies on Poly (ADP-ribose) Synthesis in Lymphocytes of Systemic Lupus Erythematosus PatientsChen, Hai-Ying 12 1900 (has links)
A method for assaying poly (ADP-ribose) polymerase (PADPRP) activity in lymphocytes of systemic lupus erythematosus (SLE) patients has been developed. Using this method, PADPRP activity has been studied in lymphocytes from 15 patients and 13 controls. The mean activity in SLE lymphocytes was significantly lower than that in controls and 60% of the SLE patients demonstrated activities below the minimum of the control population. Possible mechanisms for this altered metabolism were investigated. The Km app of PADPRP for NAD; size distribution, branch frequency, and rates of turnover of polymers; competition for substrate; and number of PADPRP molecules were studied. The data demonstrated that SLE lymphocytes have a decreased synthetic capacity rather than alterations in the substrate or in turnover of the product.
|
84 |
Inositol Trisphosphate and Cyclic Adenosine Diphosphate-Ribose Increase Quantal Transmitter Release at Frog Motor Nerve Terminals: Possible Involvement of Smooth Endoplasmic ReticulumBrailoiu, E., Miyamoto, M. D. 01 December 1999 (has links)
The release of chemical transmitter from nerve terminals is critically dependent on a transient increase in intracellular Ca2+.6,25 The increase in Ca2+ may be due to influx of Ca2+ from the extracellular fluid15 or release of Ca2+ from intracellular stores such as mitochondria.1,8,18 Whether Ca2+ utilized in transmitter release is liberated from organelles other than mitochondria is uncertain. Smooth endoplasmic reticulum is known to release Ca2+, e.g., on activation by inositol trisphosphate or cyclic adenosine diphosphate-ribose,2 so the possibility exists that Ca2+ from this source may be involved in the events leading to exocytosis. We examined this hypothesis by testing whether inositol trisphosphate and cyclic adenosine diphosphate-ribose modified transmitter release. We used liposomes to deliver these agents into the cytoplasmic compartment and binomial analysis to determine their effects on the quantal components of transmitter release. Administration of inositol trisphosphate (10-4M) caused a rapid, 25% increase in the number of quanta released. This was due to an increase in the number of functional release sites, as the other quantal parameters were unaffected. The effect was reversed with 40min of wash. Virtually identical results were obtained with cyclic adenosine diphosphate-ribose (10-4M). Inositol trisphosphate caused a 10% increase in quantal size, whereas cyclic adenosine diphosphate-ribose had no effect. The results suggest that quantal transmitter release can be increased by Ca2+ released from smooth endoplasmic reticulum upon stimulation by inositol trisphosphate or cyclic adenosine diphosphate-ribose. This may involve priming of synaptic vesicles at the release sites or mobilization of vesicles to the active zone. Inositol trisphosphate may have an additional action to increase the content of transmitter within the vesicles. These findings raise the possibility of a role of endogenous inositol phosphate and smooth endoplasmic reticulum in the regulation of cytoplasmic Ca2+ and transmitter release.
|
85 |
Sphingosine 1-Phosphate Enhances Spontaneous Transmitter Release at the Frog Neuromuscular JunctionBrailoiu, Eugen, Cooper, Robin L., Dun, Nae J. 01 January 2002 (has links)
Intracellular recordings were made from isolated frog sciatic-sartorius nerve-muscle preparations, and the effects of sphingosine 1-phosphate (S1-P) on miniature endplate potentials (MEPPs) were studied. Extracellular application of S1-P (1 and 30 μM) had no significant effects on the frequency and amplitude of MEPPs. Delivery into nerve terminals by liposomes containing 10-5, 10-4 or 10-3 M S1-P was associated with a concentration-dependent increase in MEPP frequency of 37, 63 and 86%. The per cent of median MEPP amplitude was not significantly changed, but there was an increase in the number of 'giant' MEPPs. Pre-exposure of the preparations to S1-P 10-5 but not 10-8 M entrapped in liposomes for 15 min blocked the effects of subsequent superfusion of S1-P (10-4 M)-filled liposomes on MEPP frequency. Thus, intracellular S1-P receptors seem to undergo 'desensitization' to higher concentrations of S1-P. The result provides the first evidence that S1-P acting intracellularly but not extracellularly enhances spontaneous transmitter release at the frog neuromuscular junction.
|
86 |
ADP-ribosyl-acceptor Hydrolase 3 (ARH3): Structural and Biochemical Insights into Substrate Specificity, Metal Selectivity, and Mechanism of CatalysisPourfarjam, Yasin 29 September 2021 (has links)
No description available.
|
87 |
Methods to study TCDD-inducible poly-ADP-ribose polymerase (TIPARP) mono-ADP-ribosyltransferase activityHutin, D., Grimaldi, Giulia, Matthews, J. 11 August 2018 (has links)
No / TCDD-inducible poly-ADP-ribose polymerase (TIPARP; also known as PARP7 and ARTD14) is a
mono-ADP-
ribosyltransferase
that has emerged as an important regulator of innate immunity, stem cell
pluripotency, and transcription factor regulation. Characterizing TIPARP’s catalytic activity and identifying
its target proteins are critical to understanding its cellular function. Here we describe methods that
we use to characterize TIPARP catalytic activity and its mono-ADP-ribosylation of its target proteins.
|
88 |
The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA, TIPARP-AS1Grimaldi, Giulia, Rajendra, S., Matthews, J. 21 December 2017 (has links)
Yes / The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and member of the basic helix-loop-helix-PAS family. AHR is activated by numerous dietary and endogenous compounds that contribute to its regulation of genes in diverse signaling pathways including xenobiotic metabolism, vascular development, immune responses and cell cycle control. However, it is most widely studied for its role in mediating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. The AHR target gene and mono-ADP-ribosyltransferase, TCDD-inducible poly-ADP-ribose polymerase (TIPARP), was recently shown to be part of a novel negative feedback loop regulating AHR activity through mono-ADP-ribosylation. However, the molecular characterization of how AHR regulates TIPARP remains elusive. Here we show that activated AHR is recruited to the TIPARP promoter, through its binding to two genomic regions that each contain multiple AHR response elements (AHREs), AHR regulates the expression of both TIPARP but also TIPARP-AS1, a long non-coding RNA (lncRNA) which lies upstream of TIPARP exon 1 and is expressed in the opposite orientation. Reporter gene and deletion studies showed that the distal AHRE cluster predominantly regulated TIPARP expression while the proximal cluster regulated TIPARP-AS1. Moreover, time course and promoter activity assays suggest that TIPARP and TIPARP-AS1 work in concert to regulate AHR signaling. Collectively, these data show an added level of complexity in the AHR signaling cascade which involves lncRNAs, whose functions remain poorly understood. / This work was supported by Canadian Institutes of Health Research (CIHR) operating grants (MOP-494265 and MOP-125919), an unrestricted research grant from the Dow Chemical Company, and the Johan Throne Holst Foundation to J.M. G.G. was supported by European Union Seventh Framework Program (FP7-PEOPLE2013-COFUND) under the Grant Agreement n609020 - Scientia Fellows
|
89 |
La régulation de l'expression du gène de la poly(ADP-ribose) polymérase-1 (PARP-1) durant la cicatrisation de l'épithélium cornéenZaniolo, Karine 12 April 2018 (has links)
La PARP-1 est une enzyme nucléaire qui modifie de façon post-traductionnelle plusieurs protéines nucléaires via son activité de poly(ADP-ribosyl)ation, souvent en réponse aux bris de l'ADN. Elle est ainsi impliquée dans plusieurs fonctions cellulaires vitales, incluant la réparation de l'ADN, la prolifération, la différenciation ainsi que la transcription de l'ADN pour n'en nommer que quelques- unes. Les promoteurs humains, de rat, de souris et de Drosophile du gène de la PARP-1 ont été clones et démontrent une structure commune aux gènes constitutifs (housekeeping). La transcription du gène de la PARP-1 est en partie régulée positivement par les facteurs de transcription Sp1 et Sp3 et négativement par le facteur de transcription NFI. Nous avons récemment démontré que les niveaux d'expression de la PARP-1, Sp1 et Sp3 sont fortement modulés par l'état de la densité et de la différenciation cellulaire chez des cultures primaires de cellules épithéliales de cornée de lapin (CECL). Par conséquent, la PARP-1 pourrait jouer un rôle durant la cicatrisation cornéenne puisqu'elle est fortement influencée durant les événements de migration, prolifération et différenciation qui caractérisent ce phénomène. La PARP-1 joue un rôle d'autant plus spécifique durant la cicatrisation cornéenne. En plus d'être influencée par la densité et la différenciation cellulaire, son expression est également fortement influencée par la présence de la fibronectine (FN). La FN, une protéine de la matrice extracellulaire, est sécrétée de façon massive durant la cicatrisation de l'épithélium cornéen. Considérant la relation étroite qui existe entre l'expression de la PARP-1 et de Sp1, nous avons également envisagé la possibilité que Sp1 soit une cible potentielle de la poly(ADP-ribosyl)ation par la PARP-1. PARP-1 pourrait ainsi réguler la transcription de son propre gène. En conclusion, notre étude a démontrée par quels mécanismes moléculaires la PARP joue son rôle durant la cicatrisation de l'épithélium cornéen. La PARP-1 pourrait ainsi constituer un modérateur de l'expression génique durant la phase hautement prolifique qui caractérise la cicatrisation cornéenne. / Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that post-translationally modifies a variety of proteins through its poly(ADP-ribosyl)ation activity in response to DNA strand break. PARP-1 is thus involved in several vital cellular functions such as DNA repair, cell proliferation and differentiation as well as DNA transcription. The promoter from the human, rat, mouse and Drosophila PARP-1 genes have been identified and cloned. Each of them has a structure common to housekeeping genes. PARP-1 gene transcription is positively regulated by the positive transcription factors Sp1 and Sp3 whereas it is repressed by members of the nuclear factor-l (NFI) family of transcription factors. We recently demonstrated that PARP-1, Sp1 and Sp3 expression was similarly influenced by both cell density and cell differentiation in primary cultures of rabbit corneal epithelial cells (RCECs). Because it may influence the migration, proliferation and differentiation properties of the epithelial cells from the cornea, PARP-1 may therefore play a significant function during corneal wound healing as well. We recently demonstrated that fibronectin, a major component from the extracellular matrix that is transitorily expressed during corneal wound healing, positively influenced the expression and DNA binding of Sp1 in RCECs. Similarly, PARP-1 gene expression strongly responded (positively) to the presence of FN in tissue culture plates, a further evidence that link PARP-1 expression to corneal wound healing as FN is massively secreted during that process. Moreover, and considering the close relationship between PARP-1 and Sp1 expression, we hypothesized that Sp1 could represent a potential targetfor poly(ADP-ribosyl)ation by PARP-1 and thereby alter its overall regulatory influence. We indeed demonstrated that Sp1 could be added polymers of ADPribose by PARP-1, a post-translational modification that also resulted in restricting the positive regulatory influence Sp1 might exert on its downstream target genes. In conclusion, PARP-1 indeed seems to be a potent regulator of gene expression during the highly proliferative phase that characterizes corneal wound healing.
|
90 |
Poly(ADP-ribose) polymerase-1 (PARP-1) and RNA interference (RNAI) during cell deathKandan-Kulangara, Febitha 23 April 2018 (has links)
L’activation de la poly(ADP-ribose) polymérase-1 (PARP-1) en réponse aux dommages à l’ADN est impliquée dans diverses réponses cellulaires, de la réparation de l’ADN à la mort cellulaire. Dans l'annexe I, nous avons décrit différentes techniques indispensables pour détecter le métabolisme de PARP-1 en réponse aux dommages à l’ADN in vitro et in vivo. Les travaux de cette thèse se concentrent sur le rôle de PARP-1 dans la mort cellulaire. PARP-1 est clivée et inactivée par des caspases pendant l’apoptose ; j’ai donc utilisé une PARP-1 non-clivable pour étudier le rôle de l’activation et de la fragmentation de PARP-1 dans la mort cellulaire induite par les UVB. Nous avons observé que, contrairement aux fibroblastes de peau humaine exprimant la PARP-1, les fibroblastes avec un "knockdown" de PARP-1 sont résistants à l’apoptose induite par les UVB, phénotype pouvant être totalement inversé par ré-expression de PARP-1 sauvage mais pas de PARP-1 non-clivable par les caspases, suggérant un rôle significatif du clivage de PARP-1 en réponse à la mort cellulaire induite par les UVB (chapitre 2). Dans ce contexte, nous avons récemment passé en revue comment les substrats non clivables par des caspases peuvent être utilisés comme outil important pour démystifier le rôle de ce clivage pour la mort comme pour la vie, avec l’exemple spécifique de PARP-1 non-clivable par les caspases (chapitre 3). Curieusement, en utilisant l’ARNi comme outil d’étude du rôle de PARP-1 dans la mort cellulaire, nous avons observé que l’ARNi stable (shRNA) de nombreux gènes, incluant PARP-1, échoue lors de l’apoptose, en raison de l’inactivation catalytique par clivage par une caspase de l’endoribonucléase Dicer-1, indispensable pour la régulation de l’ARNi et des miARN (chapitre 4). Cependant, nous avons découvert que l’ARNi transitoire persiste plusieurs jours même après induction de l’apoptose, soulignant des différences entre les ARNi stable et transitoire dans la dynamique de "knockdown" génétique et dans la dépendance de la fonction de Dicer-1 (chapitre 5). En résumé, mon travail a permis la découverte des avantages et des limites de l’ARNi durant l’apoptose et le rôle de PARP-1 dans la mort cellulaire induite par les UVB.
|
Page generated in 0.0324 seconds