Spelling suggestions: "subject:"ridgeregression"" "subject:"degression""
11 |
Ridge regression, a remedy for imprecise estimateAlagheband, B. M. D. January 1981 (has links)
No description available.
|
12 |
An investigation of methods of ridge regressionGalpin, Jacqueline Suzanne. January 1978 (has links)
Thesis (M.S.)--University of South Africa. / Includes bibliographical references (leaves 200-202).
|
13 |
On ridge regression and least absolute shrinkage and selection operatorAlNasser, Hassan 30 August 2017 (has links)
This thesis focuses on ridge regression (RR) and least absolute shrinkage and selection operator (lasso). Ridge properties are being investigated in great detail which include studying the bias, the variance and the mean squared error as a function of the tuning parameter. We also study the convexity of the trace of the mean squared error in terms of the tuning parameter. In addition, we examined some special properties of RR for factorial experiments. Not only do we review ridge properties, we also review lasso properties because they are somewhat similar. Rather than shrinking the estimates toward zero in RR, the lasso is able to provide a sparse solution, setting many coefficient estimates exaclty to zero. Furthermore, we try a new approach to solve the lasso problem by formulating it as a bilevel problem and implementing a new algorithm to solve this bilevel program. / Graduate
|
14 |
Ridge regression, a remedy for imprecise estimateAlagheband, Bijan M. D. January 1981 (has links)
No description available.
|
15 |
Comparison of ridge regression and neural networks in modeling multicollinear dataBakshi, Girish January 1996 (has links)
No description available.
|
16 |
Ridge regression signal processing applied to multisensor position fixingKuhl, Mark R. January 1990 (has links)
No description available.
|
17 |
[en] IMPLICIT METHOD FOR CURVE RECONSTRUCTION FROM SPARSE POINTS / [pt] MÉTODO IMPLÍCITO PARA RECONSTRUÇÃO DE CURVAS A PARTIR DE PONTOS ESPARSOSSUENI DE SOUZA AROUCA 25 April 2006 (has links)
[pt] Nas aplicações em computação gráfica e processamento de
imagens, curvas e superfícies implícitas têm sido
reconhecidas como a representação mais útil de objetos 2D
ou 3D, principalmente porque elas permitem a descrição de
formas complexas por uma fórmula. A maioria dos métodos
implícitos usam curvas algébricas para aproximar
globalmente a fronteira do objeto em uma imagem binária.
Quando a forma do objeto é complexa, é comum elevar o grau
da curva a fim de obter mais precisão na aproximação. Uma
solução alternativa é decompor hierarquicamente o domínio
em partes compactas e obter aproximações locais para o
objeto em cada parte, e então juntar os pedaços com o
objetivo de obter uma descrição global do objeto. O
principal objetivo deste trabalho é apresentar um novo
método de aproximação de curvas implícitas a partir de
pontos esparsos que melhora o estado da arte / [en] In the field of computer vision and image analysis,
implicit curves and
surfaces have been recognized as the most useful
representation for 2D or
3D objects, mainly because they allow description of
shapes by a formula.
Most of implicit methods uses algebraic curves to fit
globally the frontier of
the foreground in a binary image. When the foreground
shape is complex,
it is common to elevate the curve degree in order to
obtain more precision
on the approximation. An alternative solution is to
decompose the domain
hierarchicaly in compact parts and obtain local
approximation for the object
in each part, and then patch all together in order to
obtain a global
description of the object. The main objective of this work
is to present
a new method for implicit curve fitting from sparse point
that improves the
state of the art
|
18 |
Essays on the optimal selection of series functionsPascual, Francisco L. January 2007 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2007. / Title from first page of PDF file (viewed October 4, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
|
19 |
Comparison of ridge regression and neural networks in modeling multicollinear dataBakshi, Girish. January 1996 (has links)
Thesis (M.S.)--Ohio University, November, 1996. / Title from PDF t.p.
|
20 |
Application of ridge regression for improved estimation of parameters in compartmental models /Saha, Angshuman. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (p. [115]-122).
|
Page generated in 0.07 seconds