Spelling suggestions: "subject:"ridging"" "subject:"bidging""
1 |
Modelling riparian hydrology and streamflow generationCloke, Hannah Louise January 2003 (has links)
No description available.
|
2 |
Soil management and the water-use of potatoesPrestt, A. J. January 1983 (has links)
No description available.
|
3 |
The effects of sea ice on the tides in the Kitikmeot Sea: results using year–long current meter data from Dease Strait and tidal modelsRotermund, Lina M. 06 August 2019 (has links)
We examine the tides in the Kitikmeot Sea using year-long time-series from moored instrumentation in Dease Strait, and a 3D barotropic numerical tidal model of the region. The in-situ data show strong tidal damping during wintertime seasonal sea ice cover, with a 50-60% reduction in M2 and K1 tidal elevation and 65% reduction in M2 and K1 tidal velocities at the sea ice maximum. We hypothesize the damping largely occurs in Victoria Strait, the eastern gateway of the Kitikmeot Sea, where tidal-induced ridging causes thick, rough ice to accumulate over its shallow sill. Using the numerical model, FVCOM, we independently vary sea ice friction and sea ice thickness, and show that the observed wintertime tidal damping likely requires both very rough ice and a partial sea ice blockage in the sill region.
Analysis of the model shows different dynamics and dissipation of the dominant M2 and K1 tides. Both M2 and K1 tides are dominated by the Atlantic tides entering through Victoria Strait. Arctic tides, entering from the west, have a minor, but significant, contribution to the M2 tide. Overall, the K1 tide, after 19% dissipation in Victoria Strait and 24% in adjoining bays, propagates far into the region and behaves as a Helmholtz resonator in Dease Strait and Coronation Gulf. In contrast, 92% of the M2 tidal energy does not reach Dease Strait because, in addition to dissipation in Victoria Strait (29%), it is significantly diverted into adjoining bays and around an amphidrome in eastern Queen Maud Gulf. The K1 tide, with double the wavelength of the M2 tide, is less diverted. / Graduate / 2020-07-22
|
4 |
Effect of composition and thermomechanical processing on the texture evolution, formability and ridging behavior of type AISI 441 ferritic stainless steelMaruma, Mpho Given January 2013 (has links)
Global warming and air pollution are the major problems facing the world today. Therefore strict environmental legislation on the emission of harmful gases from motor vehicles has forced the automobile industry to search for alternative materials or new materials for exhaust systems. In order to produce cleaner exhaust gases, the exhaust temperature needs to be increased to approximately 900oC. Therefore, exhaust manifolds are exposed repeatedly to hot gases as they are nearest to the engine requiring good oxidation resistance, thermal fatigue properties, cold workability and weldability. One such material to meet the above characteristics is AISI 441 ferritic stainless steel, a dual stabilised Ti and Nb ferritic stainless steel.
Ti and Nb are added to stainless steel to stabilise C and N due to their high tendency to form carbonitrides (Ti,Nb)(C,N) and laves phase (Fe2Nb) and Fe3Nb3C. With 18% Cr content, this steel has a good corrosion resistance at elevated temperatures. Included in many applications of this steel are those requiring deep drawing and related forming operations. However, the drawability and stretchability of ferritic stainless steels is inferior to that of the more expensive austenitic stainless steels. For instance, Columbus Stainless has experienced ridging/roping problems at times during the manufacturing process of type AISI 441 ferritic stainless steel. It is believed that this problem is related to crystallographic texture of materials which have effect on formability. The R-value in FSS can be improved through optimisation of chemical composition, which includes reducing the carbon content, and
processing conditions such as reducing the slab reheating temperature, increasing annealing temperature and refining the hot band grain size.
Therefore the aim of this research project was firstly to investigate effect of amount of cold reduction and annealing temperature on texture evolution and its influence on formability. The as received 4.5 mm hot band steel was cold rolled by 62, 78 and 82% reductions respectively followed by isothermal annealing of each at 900oC, 950oC and 1025oC for 3 minutes. Orientation distribution function (ODF) through X-ray diffractometer (XRD) measurement was used to characterise the crystallographic texture formed in the steel using PANanalytical X’Pert PRO diffractrometer with X’celerator detector and variable divergence. Microstructures were characterised using optical microscopy and scanning electron microscope (SEM). The results show that steels that received 78% cold reduction and annealed at 1025oC recorded the highest Rm-value and lowest ΔR-value which enhances its deep drawing capability. In addition, this steel showed the highest intensity of shifted γ-fibre, notably {554}<225> and {334}<483>. It can therefore be concluded that the γ-fibre which favours deep drawing, is optimal after 78% cold reduction and annealing at 1025oC.
The second objective was to investigate the effect of (Nb+Ti) content on the crystallographic texture and the subsequent formability and ridging severity. AISI 441 ferritic stainless steel with different amount of (Nb+Ti) content was used i.e. Steel A (0.26Nb+0.2Ti), Steel B (0.44Nb+0.15Ti) and steel C (0.7Nb+0.32Ti). After a strain of 10%, steels A exhibited the least resistance against surface ridging with average roughness Ra of 1.5 μm followed by steels B with an average roughness Ra of 1.1μm. Steel C showed the highest resistance to ridging with an average roughness Ra of 0.64 μm. This was attributed to the increase in carbonitrites (NbTi)(C,N) due to increased (Nb+Ti) content which acted as nucleation sites for γ-fibre. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Materials Science and Metallurgical Engineering / unrestricted
|
Page generated in 0.0512 seconds