• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tidal interactions between planets and stars

Barker, Adrian John January 2011 (has links)
Since the first discovery of an extrasolar planet around a solar-type star, observers have detected over 500 planets outside the solar system. Many of these planets have Jovian masses and orbit their host stars in orbits of only a few days, the so-called 'Hot Jupiters'. At such close proximity to their parent stars, strong tidal interactions between the two bodies are expected to cause significant secular spin-orbit evolution. This thesis tackles two problems regarding the tidal evolution of short-period extrasolar planets. In the first part, we adopt a simple model of the orbit-averaged effects of tidal friction, to study the tidal evolution of planets on inclined orbits. We also analyse the effects of stellar magnetic braking. We then discuss the implications of our results for the importance of Rossiter-Mclaughlin effect observations. In the second part, we study the mechanisms of tidal dissipation in solar-type stars. In particular, internal gravity waves are launched at the interface of the convection and radiation zones of such a star, by the tidal forcing of a short-period planet. The fate of these waves as they approach the centre of the star is studied, primarily using numerical simulations, in both two and three dimensions. We find that the waves undergo instability and break above a critical amplitude. A model for the tidal dissipation that results from this process is presented, and its validity is verified by numerical integrations of the linear tidal response, in an extensive set of stellar models. The dissipation is efficient, and varies by less than an order of magnitude between all solar-type stars, throughout their main-sequence lifetimes, for a given planetary orbit. The implications of this mechanism for the survival of short-period extrasolar planets is discussed, and we propose a possible explanation for the survival of all of the extrasolar planets currently observed in short-period orbits around F, G and K stars. We then perform a stability analysis of a standing internal gravity wave near the centre of a solar-type star, to understand the early stages of the wave breaking process in more detail, and to determine whether the waves are subject to weaker parametric instabilities, below the critical amplitude required for wave breaking. We discuss the relevance of our results to our explanation for the survival of short-period planets presented in the second part of this thesis. Finally, we propose an alternative mechanism of tidal dissipation, involving the gradual radiative damping of the waves. Based on a simple estimate, it appears that this occurs even for low mass planets. However, it is in conflict with current observations since it would threaten the survival of all planets in orbits shorter than 2 days. We discuss some hydrodynamic instabilities and magnetic stresses which may prevent this process.
2

Elliptical instability of compressible flow and dissipation in rocky planets for strong tidal forcing

Clausen, Niels 16 December 2015 (has links)
No description available.
3

The effects of sea ice on the tides in the Kitikmeot Sea: results using year–long current meter data from Dease Strait and tidal models

Rotermund, Lina M. 06 August 2019 (has links)
We examine the tides in the Kitikmeot Sea using year-long time-series from moored instrumentation in Dease Strait, and a 3D barotropic numerical tidal model of the region. The in-situ data show strong tidal damping during wintertime seasonal sea ice cover, with a 50-60% reduction in M2 and K1 tidal elevation and 65% reduction in M2 and K1 tidal velocities at the sea ice maximum. We hypothesize the damping largely occurs in Victoria Strait, the eastern gateway of the Kitikmeot Sea, where tidal-induced ridging causes thick, rough ice to accumulate over its shallow sill. Using the numerical model, FVCOM, we independently vary sea ice friction and sea ice thickness, and show that the observed wintertime tidal damping likely requires both very rough ice and a partial sea ice blockage in the sill region. Analysis of the model shows different dynamics and dissipation of the dominant M2 and K1 tides. Both M2 and K1 tides are dominated by the Atlantic tides entering through Victoria Strait. Arctic tides, entering from the west, have a minor, but significant, contribution to the M2 tide. Overall, the K1 tide, after 19% dissipation in Victoria Strait and 24% in adjoining bays, propagates far into the region and behaves as a Helmholtz resonator in Dease Strait and Coronation Gulf. In contrast, 92% of the M2 tidal energy does not reach Dease Strait because, in addition to dissipation in Victoria Strait (29%), it is significantly diverted into adjoining bays and around an amphidrome in eastern Queen Maud Gulf. The K1 tide, with double the wavelength of the M2 tide, is less diverted. / Graduate / 2020-07-22
4

Tidal Dissipation in Extrasolar Planets

Pena, Fernando Gabriel 01 September 2010 (has links)
Many known extra-solar giant planets lie close to their host stars. Around 60 have their semi-major axes smaller than 0.05 AU. In contrast to planets further out, the vast majority of these close-in planets have low eccentricity orbits. This suggests that their orbits have been circularized likely due to tidal dissipation inside the planets. These exoplanets share with our own Jupiter at least one trait in common: when they are subject to periodic tidal forcing, they behave like a lossy spring, with a tidal ``quality factor'', Q, of order 10^5. This parameter is the ratio between the energy in the tide and the energy dissipated per period. To explain this, a possible solution is resonantly forced internal oscillation. If the frequency of the tidal forcing happens to land on that of an internal eigenmode, this mode can be resonantly excited to a very large amplitude. The damping of such a mode inside the planet may explain the observed Q value. The only normal modes that fall in the frequency range of the tidal forcing (~ few days) are inertial modes, modes restored by the Coriolis force. We present a new numerical technique to solve for inertial modes in a convective, rotating sphere. This technique combines the use of an ellipsoidal coordinate system with a pseudo-spectral method to solve the partial differential equation that governs the inertial oscillations. We show that, this technique produces highly accurate solutions when the density profile is smooth. In particular, the lines of nodes are roughly parallel to the ellipsoidal coordinate axes. In particular, using these accurate solutions, we estimate the resultant tidal dissipation for giant planets, and find that turbulent dissipation of inertial modes in planets with smooth density profiles do not give rise to dissipation as strong as the one observed. We also study inertial modes in density profiles that exhibit discontinuities, as some recent models of Jupiter show. We found that, in this case, our method could not produce convergent solutions for the inertial modes. Additionally, we propose a way to observe inertial modes inside Saturn indirectly, by observing waves in its rings that may be excited by inertial modes inside Saturn.
5

Tidal Dissipation in Extrasolar Planets

Pena, Fernando Gabriel 01 September 2010 (has links)
Many known extra-solar giant planets lie close to their host stars. Around 60 have their semi-major axes smaller than 0.05 AU. In contrast to planets further out, the vast majority of these close-in planets have low eccentricity orbits. This suggests that their orbits have been circularized likely due to tidal dissipation inside the planets. These exoplanets share with our own Jupiter at least one trait in common: when they are subject to periodic tidal forcing, they behave like a lossy spring, with a tidal ``quality factor'', Q, of order 10^5. This parameter is the ratio between the energy in the tide and the energy dissipated per period. To explain this, a possible solution is resonantly forced internal oscillation. If the frequency of the tidal forcing happens to land on that of an internal eigenmode, this mode can be resonantly excited to a very large amplitude. The damping of such a mode inside the planet may explain the observed Q value. The only normal modes that fall in the frequency range of the tidal forcing (~ few days) are inertial modes, modes restored by the Coriolis force. We present a new numerical technique to solve for inertial modes in a convective, rotating sphere. This technique combines the use of an ellipsoidal coordinate system with a pseudo-spectral method to solve the partial differential equation that governs the inertial oscillations. We show that, this technique produces highly accurate solutions when the density profile is smooth. In particular, the lines of nodes are roughly parallel to the ellipsoidal coordinate axes. In particular, using these accurate solutions, we estimate the resultant tidal dissipation for giant planets, and find that turbulent dissipation of inertial modes in planets with smooth density profiles do not give rise to dissipation as strong as the one observed. We also study inertial modes in density profiles that exhibit discontinuities, as some recent models of Jupiter show. We found that, in this case, our method could not produce convergent solutions for the inertial modes. Additionally, we propose a way to observe inertial modes inside Saturn indirectly, by observing waves in its rings that may be excited by inertial modes inside Saturn.

Page generated in 0.1248 seconds