• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 10
  • 3
  • 2
  • 1
  • Tagged with
  • 37
  • 24
  • 15
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asteroseismology in Binary Stars with Applications of Bayesian Inference Tools

Guo, Zhao 14 December 2016 (has links)
Space missions like Kepler have revolutionized asteroseismology, the science that infers the stellar interiors by studying oscillation frequency spectra of pulsating stars. Great advancements have been made in understanding solar-like oscillators. However, this is not the case for variable stars of intermediate masses, such asScutiand Doradus variables. By studying these stars in eclipsing binaries (EBs), model independent funda- mental parameters such as mass and radius can be inferred. On one hand, this synergy constrains the parameter space and facilitates the asteroseismic modeling, and this is shown for the Scuti type pulsating EB KIC 9851944. On the other hand, studies of binary stars must address the complexities such as mass transfer. KIC 8262223 is such an example, which consists of a mass-gaining Scuti primary and a pre-He white dwarf secondary. Some of the eccentric binary systems, the ‘heartbeat’ stars, show tidally excited oscillations. After briefly reviewing the linear theory of tidally forced stellar oscillations, we study the tidal pulsating binary KIC 3230227 and demonstrate that both amplitude and phase can be used to identify the tidally excited pulsation modes. We also discuss the variability of a Slowly Pulsating B-star KOI-81 and a Cataclysmic variable KIC 9406652. In the second part of this dissertation, we apply Bayesian statistics to some problems in binaries and asteroseismology with the help of packages BUGS and JAGS. Special attention is paid to the inverse problems (tomography) encountered in studying the double-line spectroscopic binaries.
2

Search for Northern Hemisphere Rapidly Oscillating Ap stars

V, Girish 04 1900 (has links)
Rapidly oscillating Ap (roAp) stars are cool, magnetic, chemically peculiar A-F type stars which exhibit high frequency oscillations similar to that of the famous five minute oscillations of Sun. These oscillations are interpreted as low degree (l<3), high order (n >10-30), non-radial p-mode oscillations. The periods of these pulsations lie in the range of 4-16 minutes with typical amplitudes of few milli-magnitudes (< 8mmag) in the Johnson-B filter. More than a dozen roAp stars are multiperiodic, making them suitable for asteroseismology. The presence of high magnetic fields (of the order of few kG) in these stars gives us a chance to study the effects of magnetic fields on pulsations. The thesis presents the efforts to search for new roAp stars in the northern hemisphere and its results.
3

A search for periodic variations in pulse arrival times in DA white dwarfs

Hermes, James Joseph, Jr. 17 December 2010 (has links)
We present updated observations of a pilot survey of 14 pulsating DA white dwarfs, monitored for evidence of center-of-mass motion caused by a planetary companion. We have nearly doubled the number of periodicites for which we can produce O-C diagrams that document pulse arrival times from our stars, and have implemented a method to minimize the apertures we use in our reductions in order to reduce sky noise. In addition to a previously published candidate, GD66, we have identi fed at least four more systems worthy of rigorous observational follow-up. We have also implemented a method, a generalized Lomb-Scargle periodogram, that takes into account weighted points in order to characterize any periodic behavior present in our O-C diagrams. For at least one DAV within this same sample, we have found strong observational evidence for an evolutionary time scale (via the rate of period change) that is inconsistent with cooling alone. In that star, WD0111+0018, we report for the first time measurement of the rate of period change of nonlinear combination frequencies in a pulsating white dwarf. We speculate that this may be caused by a changing rotation rate that aff ects only modes with m not equal to 0. / text
4

Accurate red giant distances and radii with asteroseismology

Zinn, Joel Coyle 11 July 2019 (has links)
No description available.
5

Asteroseismology of beta Cephei stars: effects of microscopic diffusion

Bourge, Pierre-Olivier 30 March 2007 (has links)
In this thesis, we have investigated the effects of the radiatively-driven microscopic diffusion of iron, carbon, nitrogen and oxygen in a typical $eta$~Cephei star. We thought that it was possible that microscopic diffusion could explain recent puzzling observations in some $eta$~Cephei stars, such as a wide range of observed frequencies ($ u$~Eri and 12~Lac), the existence of low metallicity $eta$~Cephei stars (observed in the SMC and the LMC), as well as hybrid $eta$~Cephei-SPB stars ($gamma$~Peg, $psi$~Cen), and unexplained carbon, nitrogen and oxygen abundance ratios ($delta$~Cet, $eta$~Cep, $xi^1$~CMa, V2052~Oph and to a lesser extent $ u$~Eri). In order to tackle the role of radiative forces and microscopic diffusion in $eta$~Cephei stars, we had to implement them in our stellar evolution code. In this process, we also had to add the effects of mass loss through stellar winds in order to remove surface abundance anomalies and numerical instabilities. We have shown that the radiative forces are able to sustain iron against gravity in $eta$~Cephei stars, that radiatively-driven microscopic diffusion is important in the external layers of $eta$~Cephei stars, and that it induces the accumulation of a significant amount of iron in the driving region of the pulsation modes, which is the iron convective zone at 200,000~K. This accumulation leads to an enhancement of the opacity and thus favors the $kappa$-mechanism responsible for the excitation of the pulsation modes. We have shown through parametric studies that indeed more modes become unstable. Our latest computations, involving a full evolutionary study, confirm the results of our parametric studies. This provides an explanation for the wide range of frequencies observed in some $eta$~Cephei stars. It can also explain the existence of the hybrid $eta$~Cephei-SPB pulsators, because the accumulation of iron broadens the instability strips for both the $eta$~Cephei and SPB stars. The exsitence of low metallicity $eta$~Cephei stars is also explained since microscopic diffusion can locally increase the iron in the driving region, creating at least a few unstable modes. Another important result from our work is that microscopic diffusion happens very early in the evolution of $eta$~Cephei stars, in fact as soon as the star is born. It would be interesting to check if the same is true for less massive stars, as it is usually assumed that they are homogeneous during the pre-main sequence. Our results for carbon, nitrogen and oxygen show that radiative forces could possibly explain the observed excess of nitrogen. They could offer a reasonable alternative to the usual argument of rotational mixing.
6

Asteroseismic probing of the internal structure of main-sequence stars

Miglio, Andrea 27 November 2007 (has links)
No description available.
7

Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

Hermes, James Joseph, Jr. 17 October 2013 (has links)
This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 M[subscript sun symbol]) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized. / text
8

Three case studies in spectroscopic mode identification of non-radially pulsating stars

Maisonneuve, Florian January 2011 (has links)
Gravity modes present in gamma Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. Mode identification will improve the knowledge of these stars considerably and allow an understanding of the issues with current pulsational models. The methods used in this thesis are also applied to a low degree pressure mode pulsator as a check for their validity. A frequency analysis followed by a mode identification were done based on the high resolution spectroscopic data of one β Cephei star, PT Puppis, and two γ Doradus stars, HD 189631 and AC Lepus. Extensive spectroscopic data sets are obtained by three instruments: HARPS, FEROS and HERCULES. We obtained 161 spectra for PT Puppis, 422 spectra for HD 189631 and 248 spectra for AC Lepus. The pulsational frequencies were determined by four methods: analysis of the variations in equivalent width, radial velocity, asymmetry of the line profile and by using the pixel-by-pixel frequency analysis. The mode identification was done using the recently developed Fourier Parameter Fit method. Without achieving the same degree of confidence for all results, we report the identification of two pulsational modes in PT Puppis: (l = 0 ; m = 0) at f₁ = 6.07 d⁻¹ and (2 ; 0) or (1 ; +1) at f₂ = 5.99 d⁻¹, four modes in HD 189631: (1 ; +1) at f₁ = 1.67 d⁻¹, (3 ; -2) at f₂ = 1.42 d⁻¹, (2 ; -2) at f₃ = 0.07 d⁻¹ and (4 ; +1) at f₄ = 1.82 d⁻¹ and two modes in AC Lepus: (2 ; -1) at f₁ = 0.75 d⁻¹ and (3 ; -3) at f₂ = 1.09 d⁻¹. This study provides the first pulsational analysis based on spectroscopy of PT Puppis, HD 189631 and AC Lepus. We discuss the performance of current methods of analysis, outline the difficulties presented by γ Doradus stars, and compare our results with other published pulsational mode identifications.
9

Détection et modélisation de binaires sismiques avec Kepler / Detection and modelling of seismic binaries with Kepler

Marcadon, Frédéric 20 March 2018 (has links)
Le satellite spatial Kepler a détecté des oscillations de type solaire parmi plusieurs centaines d'étoiles, permettant la détermination de leurs propriétés physiques à l'aide de l’astérosismologie. Les modèles d'évolution stellaire et les lois d'échelle employés pour déterminer les paramètres tels que la masse, le rayon et l'âge nécessitent toutefois une calibration adaptée. Dans ce contexte, l'utilisation des systèmes binaires présentant des oscillations de type solaires pour les deux étoiles semble particulièrement appropriée. Au cours de cette thèse, nous avons procédé à un travail de détection de ces binaires sismiques parmi les données de Kepler ainsi qu'au développement des outils nécessaires à leur analyse. Bien que la découverte d'une nouvelle binaire sismique semblait très peu probable, nous avons pu rapporter pour la toute première fois la détection d'oscillations de type solaire associées aux deux étoiles les plus brillantes d'un système triple, à savoir HD 188753. À partir de la modélisation, nous avons déterminé des âges semblables pour les deux étoiles détectées en astérosismologie, comme attendu en raison de leur origine commune. Par ailleurs, nous avons entrepris la première analyse orbitale de ce système hiérarchique dans le but d'obtenir une estimation directe des masses et de la parallaxe. Finalement, l'exemple de HD 188753 illustre notre capacité à détecter et à modéliser chacune des étoiles d'un système binaire ou multiple tout en réalisant l'analyse orbitale de celui-ci. Les différents outils développés au cours de cette thèse seront intensivement utilisés dans le cadre des futures missions TESS et PLATO. / The Kepler space telescope detected solar-like oscillations in several hundreds of stars, providing a way to determine their physical properties using asteroseismology. However, the stellar evolutionary models and scaling relations employed to determine parameters such as the mass, the radius and the age require a proper calibration. In this context, the use of seismic binaries showing solar-like oscillations in both stars is especially suitable. During this thesis, we have worked towards the detection of such seismic binaries from the Kepler database and developed the necessary tools to study them. Although the discovery of a new seismic binary was very unlikely, we were able to report for the first time the detection of solar-like oscillations in the two brightest stars of a triple stellar system, namely HD 188753. Using stellar modelling, we found compatible ages for the two stars derived from asteroseismology, as expected from their common origin. In addition, we performed the first orbital analysis of this hierarchical system in order to derive a direct estimate of masses and parallax. Finally, the example of HD 188753 shows our capability to detect and model each of the stars of a binary or multiple system and to perform the orbital analysis of this one. The various tools developed during this thesis will be extensively used in the context of the future missions TESS and PLATO.
10

Characterizing the Milky Way's Stellar Populations by Understanding Stars Inside and Out

Epstein, Courtney Rose 07 October 2014 (has links)
No description available.

Page generated in 0.0696 seconds