• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asteroseismology of beta Cephei stars: effects of microscopic diffusion

Bourge, Pierre-Olivier 30 March 2007 (has links)
In this thesis, we have investigated the effects of the radiatively-driven microscopic diffusion of iron, carbon, nitrogen and oxygen in a typical $eta$~Cephei star. We thought that it was possible that microscopic diffusion could explain recent puzzling observations in some $eta$~Cephei stars, such as a wide range of observed frequencies ($ u$~Eri and 12~Lac), the existence of low metallicity $eta$~Cephei stars (observed in the SMC and the LMC), as well as hybrid $eta$~Cephei-SPB stars ($gamma$~Peg, $psi$~Cen), and unexplained carbon, nitrogen and oxygen abundance ratios ($delta$~Cet, $eta$~Cep, $xi^1$~CMa, V2052~Oph and to a lesser extent $ u$~Eri). In order to tackle the role of radiative forces and microscopic diffusion in $eta$~Cephei stars, we had to implement them in our stellar evolution code. In this process, we also had to add the effects of mass loss through stellar winds in order to remove surface abundance anomalies and numerical instabilities. We have shown that the radiative forces are able to sustain iron against gravity in $eta$~Cephei stars, that radiatively-driven microscopic diffusion is important in the external layers of $eta$~Cephei stars, and that it induces the accumulation of a significant amount of iron in the driving region of the pulsation modes, which is the iron convective zone at 200,000~K. This accumulation leads to an enhancement of the opacity and thus favors the $kappa$-mechanism responsible for the excitation of the pulsation modes. We have shown through parametric studies that indeed more modes become unstable. Our latest computations, involving a full evolutionary study, confirm the results of our parametric studies. This provides an explanation for the wide range of frequencies observed in some $eta$~Cephei stars. It can also explain the existence of the hybrid $eta$~Cephei-SPB pulsators, because the accumulation of iron broadens the instability strips for both the $eta$~Cephei and SPB stars. The exsitence of low metallicity $eta$~Cephei stars is also explained since microscopic diffusion can locally increase the iron in the driving region, creating at least a few unstable modes. Another important result from our work is that microscopic diffusion happens very early in the evolution of $eta$~Cephei stars, in fact as soon as the star is born. It would be interesting to check if the same is true for less massive stars, as it is usually assumed that they are homogeneous during the pre-main sequence. Our results for carbon, nitrogen and oxygen show that radiative forces could possibly explain the observed excess of nitrogen. They could offer a reasonable alternative to the usual argument of rotational mixing.
2

Three case studies in spectroscopic mode identification of non-radially pulsating stars

Maisonneuve, Florian January 2011 (has links)
Gravity modes present in gamma Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. Mode identification will improve the knowledge of these stars considerably and allow an understanding of the issues with current pulsational models. The methods used in this thesis are also applied to a low degree pressure mode pulsator as a check for their validity. A frequency analysis followed by a mode identification were done based on the high resolution spectroscopic data of one β Cephei star, PT Puppis, and two γ Doradus stars, HD 189631 and AC Lepus. Extensive spectroscopic data sets are obtained by three instruments: HARPS, FEROS and HERCULES. We obtained 161 spectra for PT Puppis, 422 spectra for HD 189631 and 248 spectra for AC Lepus. The pulsational frequencies were determined by four methods: analysis of the variations in equivalent width, radial velocity, asymmetry of the line profile and by using the pixel-by-pixel frequency analysis. The mode identification was done using the recently developed Fourier Parameter Fit method. Without achieving the same degree of confidence for all results, we report the identification of two pulsational modes in PT Puppis: (l = 0 ; m = 0) at f₁ = 6.07 d⁻¹ and (2 ; 0) or (1 ; +1) at f₂ = 5.99 d⁻¹, four modes in HD 189631: (1 ; +1) at f₁ = 1.67 d⁻¹, (3 ; -2) at f₂ = 1.42 d⁻¹, (2 ; -2) at f₃ = 0.07 d⁻¹ and (4 ; +1) at f₄ = 1.82 d⁻¹ and two modes in AC Lepus: (2 ; -1) at f₁ = 0.75 d⁻¹ and (3 ; -3) at f₂ = 1.09 d⁻¹. This study provides the first pulsational analysis based on spectroscopy of PT Puppis, HD 189631 and AC Lepus. We discuss the performance of current methods of analysis, outline the difficulties presented by γ Doradus stars, and compare our results with other published pulsational mode identifications.
3

Spectroscopic mode identification in a sample of non-radially pulsating stars

Wright, Duncan John January 2008 (has links)
This thesis has analysed spectroscopic data for three stars in detail, the β Cephei star V2052 Ophiuchus, the γ Doradus star QW Puppis and the γ Doradus candidate star HD139095. Twelve other candidate γ Doradus stars have had their Vrotsin i, binary status and, where possible, the presence of line profile variation determined. A new technique utilising scaled delta functions has been developed to allow the extraction of a single, high S/N line profile from a high resolution and large wavelength range spectrum. This procedure has performed well in the γ Doradus stars examined. The application of the new mode identification technique, the Fourier Parameter Fit method, to the three stars examined in detail has been very successful. For each of the three stars constraints have been placed on the degree (l) and the azimuthal order (m) of the non-radial pulsation modes detected.
4

Spectroscopic mode identification in a sample of non-radially pulsating stars

Wright, Duncan John January 2008 (has links)
This thesis has analysed spectroscopic data for three stars in detail, the β Cephei star V2052 Ophiuchus, the γ Doradus star QW Puppis and the γ Doradus candidate star HD139095. Twelve other candidate γ Doradus stars have had their Vrotsin i, binary status and, where possible, the presence of line profile variation determined. A new technique utilising scaled delta functions has been developed to allow the extraction of a single, high S/N line profile from a high resolution and large wavelength range spectrum. This procedure has performed well in the γ Doradus stars examined. The application of the new mode identification technique, the Fourier Parameter Fit method, to the three stars examined in detail has been very successful. For each of the three stars constraints have been placed on the degree (l) and the azimuthal order (m) of the non-radial pulsation modes detected.
5

On X-ray pulsations in beta Cephei-type variables

Oskinova, L., Todt, H., Huenemoerder, D., Hubrig, S., Ignace, Richard, Hamann, W.-R., Balona, L. 01 January 2015 (has links) (PDF)
Beta Cephei-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one Beta Cep-variable also shows periodic variability in X-rays. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question.

Page generated in 0.0727 seconds