Spelling suggestions: "subject:"riduzione delay dimensionality"" "subject:"riduzione delay dimensionalit""
1 |
Estimating Poolability of Transport Demand Using Shipment Encoding : Designing and building a tool that estimates different poolability types of shipment groups using dimensionality reduction. / Uppskattning av Poolbarhet av Transportefterfrågan med Försändelsekodning : Designa och bygga ett verktyg som uppskattar olika typer av poolbarhetstyper av försändelsegrupper med hjälp av dimensionsreduktion och mätvärden för att mäta poolbarhetsegenskaper.Kërçini, Marvin January 2023 (has links)
Dedicating less transport resources by grouping goods to be shipped together, or pooling as we name it, has a very crucial role in saving costs in transport networks. Nonetheless, it is not so easy to estimate pooling among different groups of shipments or understand why these groups are poolable. The typical solution would be to consider all shipments of both groups as one and use some Vehicle Routing Problem (VRP) software to estimate costs of the new combined group. However, this brings with it some drawbacks, such as high computational costs and no pooling explainability. On this work we build a tool that estimates the different types of pooling using demand data. This solution includes mapping shipment data to a lower dimension, where each poolability trait corresponds to a latent dimension. We tested different dimensionality reduction techniques and found that the best performing are the autoencoder models based on neural networks. Nevertheless, comparing shipments on the latent space turns out to be more challenging than expected, because distances in these latent dimensions are sometimes uncorrelated to the distances in the real shipment features. Although this limits the use cases of this approach, we still manage to build the full poolability tool that incorporates the autoencoders and uses metrics we designed to measure each poolability trait. This tool is then compared to a VRP software and proves to have close accuracy, while being much faster and explainable. / Att optimera transportresurser genom att gruppera varor som ska skickas tillsammans, även kallat poolning, spelar en avgörande roll för att spara kostnader i transportnätverk. Trots detta är det inte så enkelt att uppskatta poolning mellan olika grupper av försändelser eller förstå varför dessa grupper kan poolas. Den vanliga lösningen skulle vara att betrakta alla försändelser från båda grupperna som en enda enhet och använda mjukvara för att lösa problemet med fordonsschemaläggning (Vehicle Routing Problem, VRP) för att uppskatta kostnaderna för den nya sammanslagna gruppen. Detta medför dock vissa nackdelar, såsom höga beräkningskostnader och bristande förklarbarhet när det kommer till poolning. I detta arbete bygger vi ett verktyg som med hjälp av efterfrågedata uppskattar olika typer av poolning. Lösningen innefattar kartläggning av försändelsedata till en lägre dimension där varje egenskap för poolbarhet motsvarar en dold dimension. Vi testade olika tekniker för att minska dimensionerna och fann att de bäst presterande är autoencoder-modeller baserade på neurala nätverk. Trots detta visade det sig vara mer utmanande än förväntat att jämföra försändelser i det dolda rummet eftersom avstånden i dessa dolda dimensioner ibland inte korrelerar med avstånden i de faktiska försändelseegenskaperna. Trots att detta begränsar användningsområdena för denna metod lyckades vi ändå bygga ett komplett verktyg för poolbarhet som inkluderar autoencoders och använder metriker som vi har utformat för att mäta varje egenskap för poolbarhet. Detta verktyg jämförs sedan med en VRP-mjukvara och visar sig ha liknande noggrannhet samtidigt som det är betydligt snabbare och mer förklarligt. / Dedicare meno risorse di trasporto raggruppando insieme le merci da spedire, o creando un pool come lo chiamiamo noi, svolge un ruolo cruciale nel risparmio dei costi nelle reti di trasporto. Tuttavia, non è facile stimare il grado di aggregazione tra diversi gruppi di spedizioni o comprendere perché tali gruppi siano aggregabili. La soluzione tipica consisterebbe nel considerare tutte le spedizioni di entrambi i gruppi come una sola entità e utilizzare un software di Problema di Routing dei Veicoli (VRP) per stimare i costi del nuovo gruppo combinato. Tuttavia, ciò comporta alcuni svantaggi, come elevati costi computazionali e la mancanza di spiegazioni riguardo all'aggregazione. In questo lavoro abbiamo sviluppato uno strumento che stima i diversi tipi di aggregabilità utilizzando i dati di domanda. Questa soluzione prevede la mappatura dei dati delle spedizioni in una dimensione inferiore, in cui ciascuna caratteristica di aggregabilità corrisponde a una dimensione. Abbiamo testato diverse tecniche di riduzione dimensionale e abbiamo constatato che i modelli autoencoder basati su reti neurali sono i più efficaci. Tuttavia, confrontare le spedizioni nello spazio latente si è rivelato più complesso del previsto, poiché le distanze in queste dimensioni latenti talvolta non sono correlate alle distanze nelle caratteristiche reali delle spedizioni. Sebbene ciò limiti le applicazioni di questo approccio, siamo comunque riusciti a sviluppare uno strumento completo per l'aggregabilità che incorpora gli autoencoder e utilizza metriche da noi progettate per misurare ciascuna caratteristica di aggregabilità. Successivamente, abbiamo confrontato questo strumento con un software VRP e dimostrato che presenta un'accuratezza simile, pur essendo più veloce e fornendo spiegazioni chiare.
|
Page generated in 0.1392 seconds