Spelling suggestions: "subject:"riemann sphere"" "subject:"niemann sphere""
1 |
The Collet-Eckmann condition for rational functions on the Riemann sphereAspenberg, Magnus January 2004 (has links)
No description available.
|
2 |
The Collet-Eckmann condition for rational functions on the Riemann sphereAspenberg, Magnus January 2004 (has links)
No description available.
|
3 |
On the Moduli Space of Cyclic Trigonal Riemann Surfaces of Genus 4Ying, Daniel January 2006 (has links)
A closed Riemann surface which can be realized as a 3-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. Accola showed that the trigonal morphism is unique for Riemann surfaces of genus g ≥ 5. This thesis characterizes the cyclic trigonal Riemann surfaces of genus 4 with non-unique trigonal morphism using the automorphism groups of the surfaces. The thesis shows that Accola’s bound is sharp with the existence of a uniparametric family of cyclic trigonal Riemann surfaces of genus 4 having several trigonal morphisms. The structure of the moduli space of trigonal Riemann surfaces of genus 4 is also characterized. Finally, by using the same technique as in the case of cyclic trigonal Riemann surfaces of genus 4, we are able to deal with p-gonal Riemann surfaces and show that Accola’s bound is sharp for p-gonal Riemann surfaces. Furthermore, we study families of p-gonal Riemann surfaces of genus (p − 1)2 with two p-gonal morphisms, and describe the structure of their moduli space.
|
4 |
Transformações de Mobius e projeções na esfera de Riemann / Mobius Transformations and Riemann Sphere ProjectionsRaiz, Caio Eduardo Martins 06 November 2018 (has links)
Nessa dissertação exploramos os efeitos geométricos das Transformações de Möbius em C utilizando projeções na Esfera de Riemann. Como aplicação, apresentamos a ação de algumas transformações aplicadas em cônicas no plano. Uma atividade didática voltada aos alunos do Ensino Médio sobre Transformações de Möbius utilizando o Geogebra é apresentada. / In the course of this dissertation we explore the geometric effects of the Möbius Transforms in C using projections in the Riemann sphere. As an application, we present the action of some transformations applied on conics in the plane. A didactic activity aimed at high school students about Möbius Transformations using Geogebra is presented.
|
5 |
Transformações de Mobius e projeções na esfera de Riemann / Mobius Transformations and Riemann Sphere ProjectionsCaio Eduardo Martins Raiz 06 November 2018 (has links)
Nessa dissertação exploramos os efeitos geométricos das Transformações de Möbius em C utilizando projeções na Esfera de Riemann. Como aplicação, apresentamos a ação de algumas transformações aplicadas em cônicas no plano. Uma atividade didática voltada aos alunos do Ensino Médio sobre Transformações de Möbius utilizando o Geogebra é apresentada. / In the course of this dissertation we explore the geometric effects of the Möbius Transforms in C using projections in the Riemann sphere. As an application, we present the action of some transformations applied on conics in the plane. A didactic activity aimed at high school students about Möbius Transformations using Geogebra is presented.
|
Page generated in 0.5649 seconds