• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eliminating Right-Turn-on-Red (RTOR) at Key Intersections in a City Core : A Traffic Simulation Study Analyzing How Traffic Conditions Could Change When Restricting RTOR in Downtown Fredericton, New Brunswick

Aspnäs, Frida January 2012 (has links)
The City of Fredericton is the capital of New Brunswick, located in eastern Canada. Right-turn-on-red (RTOR) is a general practice at any traffic intersection in this maritime province. Many collisions between pedestrians and vehicles have been recorded at signalized intersections in the downtown area of the city. Due to the number of collisions, the City of Fredericton was interested in investigating how a restriction against RTOR could affect vehicular traffic. The purpose and goal of this project was to develop a calibrated traffic model of the downtown area of Fredericton that could be used for simulation studies. Two main changes were investigated: 1) a restriction against RTOR for each of eleven key intersections in the downtown area, and 2) a restriction against left-turns at one selected intersection. The traffic simulation model was also used for analyzing how factors such as pedestrian volumes, lane channelization, and turning proportions affect the changes in traffic conditions due to permitting, or prohibiting, right-turn-on-red. The traffic simulation model was created in the TSIS/CORSIM software. Several different scenarios were generated for analysis. The results of the simulation show that the traffic conditions in the whole downtown area will be affected when introducing a restriction against RTOR. Certain intersections show a relatively high change while others show no significant change at all. Several different factors were seen to affect the number of RTOR that could be performed at an intersection. One main factor was lane channelization. With a shared lane, the proportion of right-turning vehicles at the intersection was found to highly affect how many RTOR can be performed. Pedestrian volumes prove to be a third factor affecting the number of RTOR at an intersection. Overall results demonstrate that there are only a few intersections where it is suitable for the City of Fredericton to implement a restriction against RTOR.
2

Quantity-based Characteristics of Right-turn-on-red Treatments in Safety and Operation at Signalized Intersections

Xu, Yifan 24 May 2022 (has links)
No description available.
3

Driver Understanding of the Flashing Yellow Arrow and Dynamic No Turn on Red Sign for Right Turn Applications

Casola, Elizabeth 09 July 2018 (has links)
Since their introduction to the 2009 Edition of the Manual on Uniform Traffic Control Devices, flashing yellow arrows (FYA) have had significant success in communicating the permissive turn message. While widely used for the permissive left turn maneuver, agencies recently have been utilizing flashing yellow arrows for the use with right turn applications as drivers interact with crossing pedestrians. As pedestrian conflicts are a concern during the permissive green phase, there is additional worry for the potential interaction between a pedestrian and vehicle turning right on red. This research explores the existing driver comprehension of permissive right turns during both green and red phases through static evaluation and microsimulation. Proposed traffic devices including the FYA and the Dynamic No Turn on Red sign were evaluated in relation to the existing signal and sign conditions implemented in the field. In comparing the proposed FYA to the existing circular green signal, the survey evaluation determined a statistically significant increase in drivers’ yielding responses when interacting with the FYA as opposed to the circular green. Through application of the VISSIM program, it was determined that right turning speeds with the FYA present were significantly lower than when interacting with solely the circular green. Both the static evaluation and microsimulation determined a strong similarity between the existing circular red and R10-11 sign and the proposed dynamic no turn on red sign which verifies the strong understanding drivers have of the message and the sign itself.

Page generated in 0.0191 seconds