Spelling suggestions: "subject:"risk assessment."" "subject:"disk assessment.""
591 |
TACTILE AND MULTISPECTRAL BIMODAL IMAGING FOR BREAST CANCER RISK ASSESSMENTOleksyuk, Vira, 0000-0002-5071-2298 January 2021 (has links)
American Cancer Society estimates that in 2021 nearly 300,000 women in the United States will be diagnosed with invasive breast cancer, and about 43,600 women will die from breast cancer. While many have access to health care and cancer screening, women from rural or underdeveloped communities often have limited access. Therefore, there is a need for an inexpensive and easy-to-use breast cancer identification device, which can be employed in small clinics to provide support to primary care physicians. This work aims to develop a method to characterize breast tumors and tissue using non-invasive imaging modalities. The proposed bimodal imaging system has tactile and multispectral imaging capabilities. Tactile imaging modality characterizes tumors by esti-mating their depth, size, and stiffness, along with the Tactile Index. Multispectral imaging modality identifies breast asymmetry, texture, and inflammation changes, together with the Spectral Index. These indices are combined with the BCRAT Index, the risk score devel¬oped by the National Institute of Health, to form the Multimodal Index for personalized breast cancer risk assessment.
In this study, we will describe the development of the bimodal imaging system. We will present the algorithms for tactile and multispectral modalities. Tactile and Multispec¬tral Profile Diagrams are developed to capture broad imaging signals in a compact and application-specific way. A Tactile Profile Diagram is a pictorial representation of the rel¬ative depth, size, and stiffness of the imaged tumor. A Multispectral Profile Diagram is a representative pattern image for breast tissue superficial optical properties. To classify the profile diagrams, we employ the Convolutional Neural Network deep learning method. We will describe the results of the experiments conducted using tissue-mimicking phan¬toms and human in-vivo experiments. The results demonstrate the ability of the method to classify and quantify tumor and tissue characteristics. Finally, we describe the method to calculate Multimodal Index for the malignancy risk assessment via tactile and multispectral imaging modalities and the risk probability based on the health records. / Electrical and Computer Engineering
|
592 |
Earthquake risk assessment of Mississippi State UniversityPeiris, Inoka 07 August 2010 (has links)
Mississippi State University is one of the many public institutions in Mississippi located near a seismic hazard zone known as the New Madrid Seismic Zone (NMSZ). Previous studies reveal the possibility of damage to the campus during an earthquake is in the order of ten percent. Risk assessment for building structures on campus was carried out using HAZUS-MH MR3 software package, for several earthquake scenarios defined to replicate historic and hypothetical earthquake events.The study predicts peak ground accelerations of 0.09g to 0.2g relating to 0.67% to 4.28% building loss ratios respectively, which amounts to a loss of $8.2 million to $53 million. Wood and reinforced masonry buildings show significant resistance to earthquakes compared to concrete and unreinforced masonry buildings. The results of this study suggest that there is a considerable seismic risk to Mississippi State University buildings from a seismic event originating in NMSZ.
|
593 |
The construction of risk and the 'othering' of HIV positive women in Dublin, Ireland /Powell, Sarah J. January 2003 (has links)
No description available.
|
594 |
The Assessment of Suicidal Risk in Hospitalized Patients: Hope, Competence, Threat, Succorance, Helplessness, and ControlKary, Clifford A. (Clifford Arthur) 08 1900 (has links)
Although the suicide literature is replete with studies approaching risk assessment from the standpoint of the external observer, research into the intrapsychic mechanisms involved is rare. This study investigated the importance of hope, threat, competence, succorance, helplessness, and control among inpatients hospitalized for suicidal behavior.
|
595 |
Risk assessment of non-intentionally added substances in polyester yarn made from recycled polyethylene terephthalate (PET) / Riskbedömning av oavsiktligt tillsatta ämnen i polyestergarn tillverkat från återvunnen polyetentereftalat (PET)Arnqvist, Kristina January 2023 (has links)
Polyester is a synthetic material made from polyethylene terephthalate (PET), which is synthesised from fossil raw materials. Many clothing manufacturers are using polyester in their clothing, which, from an environmental perspective, creates a non-sustainable cycle. However, manufacturing can be made more sustainable by using recycled PET bottles as the raw material for polyester yarn. A clothing company that has taken a stand against materials made from fossil fibres and instead invests in only selling clothes made from sustainable materials is the Swedish children's clothing brand Polarn o. Pyret. Being able to use polyester made from PET bottles is important for Polarn o. Pyret to ensure the use of sustainable fibres in their clothing. In the past, the recycled polyester was used in combination with polyester from virgin fibre, but now the goal is instead to switch completely to the recycled polyester. However, the increased quantity of recycled polyester can involve new risks. The need to map potential contaminants is important because Polarn o. Pyret makes clothes for children, which entails strict requirements on the chemical content of the clothes. The purpose of this work is to get an overview of which contaminants that can accumulate in the polyester fibre and thus pose a risk when using recycled polyester made from PET bottles. The goal is to be able to shed light on these contaminants and write a proposal for a risk assessment guide that can establish a foundation for how Polarn o. Pyret should be able to act when using recycled polyester. The work was carried out through an extensive literature study, where research articles and review articles published on scientific databases were the main source of information. Focus was on the risk of non-intentionally added substances that can be traced from recycled PET bottles. The risk assessment was done in consideration of the regulations that is established within the European Union (EU), using the EU chemicals regulation REACH and the European Chemicals Agency (ECHA) database. After the mapping of NIAS in r-PET, the literature showed 42 potential contaminants to be present. These substances originated from the degradation of PET or the degradation of additives, and impurities from the recycling process and post-consumption use. Adhesives, labels, and caps are a contributing factor to the formation of NIAS originating from the recycling process. Since PVC was found to be the most common plastic that could contaminate PET via recycling, the additives used in PVC could also migrate to PET and create impurities. The most common phthalate found in this study was DEHP, which was the main plasticiser in PVC. 15 substances of the NIAS found in the literature was CMR substances, which means that they either were, or were suspected to be, carcinogenic, mutagenic and/or toxic to reproduction. Among these were substances such as benzene, antimony, cadmium, lead, acetaldehyde, and formaldehyde. Certain substances found through the literature were classified to be endocrine disruptors. These NIAS were p-nonylphenol, the organophosphite TNPP, the phthalates DEHP, DBP, BBP and, DIBP, nickel and BPA. Some of the NIAS found were under assessment of being classified as persistent, bioaccumulativ and toxic (PBT). The PBT substances found were the organophosphite compound Irgafos 168 and the UV-stabilisers Tinuvin P, UV-234 and UV- 328. The risk assessment showed 20 contaminants that may cause irritation to the skin/eyes and/or throat and 24 contaminants which may be toxic to the aquatic life. This risk assessment showed that the recycling process of PET bottles is not completely safe, because potential contaminants could be transferred into the polyester yarn, and then carried over into children's garment and pose health risks to children. / Polyester är ett syntetiskt material tillverkat av polyetentereftalat (PET), som är syntetiserat från fossila råvaror. Många klädtillverkare använder polyester i sina kläder vilket ur ett miljöperspektiv skapar ett ohållbart kretslopp. Tillverkningen kan dock göras mer hållbar genom att använda återvunna PET-flaskor som råvara för polyestergarn. Ett klädföretag som tagit ställning mot material tillverkade av fossila fibrer och i stället satsar på att endast sälja kläder av hållbara material är det svenska barnklädesmärket Polarn o. Pyret. Att kunna använda polyester tillverkad av PET-flaskor är viktigt för att Polarn o. Pyret ska kunna säkerställa användningen av hållbara fibrer i sina kläder. Tidigare användes den återvunna polyestern i kombination med polyester från jungfruliga råvaror, men nu är målet i stället att helt gå över till den återvunna polyestern. Den ökade mängden återvunnen polyester kan dock medföra nya risker. Behovet av att kartlägga potentiella föroreningar är också viktigt eftersom Polarn o. Pyrets gör kläder för barn, vilket medför hårda krav på klädernas kemikalieinnehåll. Syftet med detta arbete var att få en överblick över vilka kemikalier som kan ansamlas i polyesterfibern och därmed utgöra en risk vid användning av återvunnen polyester tillverkad av PET-flaskor. Målet var att identifiera dessa föroreningar och inkludera dessa ämnen i ett förslag till en riskbedömningsguide. Denna riskbedömningsguide skulle därmed kunna utgöra ett stöd för Polarn o. Pyret vid hantering av återvunnen polyester. Arbetet har utförts genom en omfattande litteraturstudie, där forskningsartiklar och översiktsartiklar publicerade på vetenskapliga databaser var den huvudsakliga informationskällan. Fokus låg på risken för oavsiktligt tillsatta ämnen som kan spåras från återvunna PET-flaskor. Riskbedömningen har gjorts med hänsyn till de regelverk som är etablerade inom Europeiska unionen (EU), med hjälp av EU:s kemikalieförordning REACH och europeiska kemikaliemyndighetens (ECHA) databas. Efter kartläggningen av oavsiktligt tillsatta ämnen i återvunnen PET visade litteraturen att det fanns 42 potentiella kontaminanter. Dessa ämnen härrörde från nedbrytningen av PET eller nedbrytningen av tillsatser, samt från föroreningar kopplade till återvinningsprocessen. Lim, etiketter och korkar var en bidragande faktor till bildandet av de oavsiktligt tillsatta ämnen som härrörde från återvinningsprocessen. Eftersom PVC visade sig vara den vanligaste plasten som kunde kontaminera PET via återvinningen, kunde tillsatserna som används i PVC också migrera till PET och skapa föroreningar. Den vanligaste ftalaten som förekom i återvunnen PET i denna studie var DEHP, vilken är den huvudsakliga mjukgöraren i PVC. 15 oavsiktligt tillsatta ämnen konstaterades vara CMR-ämnen, vilket betyder att de var, eller misstänktes vara, cancerframkallande, mutagena och/eller reproduktionstoxiska. Bland dessa fanns ämnen som bensen, antimon, kadmium, bly, acetaldehyd och formaldehyd. Vissa ämnen som påträffades genom litteraturstudien klassificerades som hormonstörande. Dessa var p- nonylfenol, organofosfiten TNPP, ftalaterna DEHP, DBP, BBP och DIBP, nickel och BPA. En del av de ämnen som kartlades under riskbedömningen klassificerades som persistenta, bioackumulerande och toxiska (PBT). Bland dessa förekom organofosfitföreningen Irgafos 168 (Tris(2,4-ditert-butylfenyl)fosfit) och UV-stabilisatorerna Tinuvin P, UV-234 och UV-328. Riskbedömningen visade på 20 kontaminanter som kan orsaka irritation på hud/ögon och/eller svalg och 24 föroreningar som kan vara giftiga för vattenlivet. Denna riskbedömning visade att återvinningsprocessen av PET-flaskor inte är helt säkert, eftersom potentiella kontaminanter kan inkluderas i polyestergarnet och därigenom skapa faror för barnen vid användningen av kläder tillverkade från återvunnen polyester.
|
596 |
Assessing the Contribution of Hearing Loss in Prediction Models for Dementia Developed and Validated Using Data from the Canadian Longitudinal Study on AgingChan, Therese 08 August 2023 (has links)
Introduction: Hearing impairment is an emerging modifiable risk factor for dementia, but the relative predictive abilities of subjective and objective measures of hearing in dementia risk prediction algorithms are unclear. The objective was to develop and validate prediction models for 3-year incidence of dementia in older Canadians, and to evaluate the independent contribution of self-rated hearing impairment and audiometry-based moderate hearing loss. --
Methods: Baseline (2011 to 2015) and 3-year follow-up data from the Comprehensive cohort of the Canadian Longitudinal Study of Aging were used to build logistic regression models for 3-year incidence of dementia. Individuals who were under 55 years of age, reported physician-diagnosed dementia at baseline, and/or did not have data on dementia status at follow-up were excluded, producing a sample of 19,830 older Canadians. Hearing impairment was defined subjectively as self-reporting fair or poor hearing (versus excellent, very good, or good hearing) and was defined objectively as having a better-ear pure-tone average of the speech-frequencies (500, 1000, 2000, and 4000 Hz) above 40 dB with audiometry. --
Results: Both hearing measures were associated with dementia incidence after adjustment with other risk factors (self-rated fair/poor hearing adjusted odds ratio (aOR) 1.76, CI 0.96-3.23, audiometry-derived hearing loss aOR 2.60, CI 1.38-4.87). Audiometrically-derived hearing loss and self-rated hearing had similar population discrimination (c-statistic of model with self-rated hearing = 0.803, CI 0.752-0.859, c-statistic of model with audiometrically confirmed hearing loss = 0.808, CI 0.762-0.870) and similar calibration. --
Conclusion: Due to the accessibility of the self-reported hearing measure, the use of self-rated hearing in dementia risk prediction tools may have a larger clinical impact than audiometrically-defined hearing ability. Model performance within subgroups (e.g., older age groups, hypertension status, etc.) must be evaluated in future work to assess the magnitude of miscalibration, if any, in the use of self-reported hearing ability compared to audiometry.
|
597 |
Climate Change Risk Assessment of Hydropower Projects: Towards a Holistic ApproachWasti, Asphota January 2019 (has links)
No description available.
|
598 |
Advancing Toxicology-Based Cancer Risk Assessment with InformaticsBercu, Joel P. 03 May 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Since exposure to carcinogens can occur in the environment from various point sources, cancer risk assessment attempts to define and limit potential exposure such that the risk of developing cancer is negligible. While cancer risk assessment is widely used with certain methodologies well accepted in the scientific literature and regulatory guidances, there are still gaps which increase uncertainties when assessing risk including: (1) mixtures of genotoxins, (2) genotoxic metabolites, and (3) nongenotoxic carcinogens. An in silico model was developed to predict the cancer risk of a genotoxin which improved methodology for a single compound and mixtures. Monte Carlo simulations performed with a carcinogenicity potency database to estimate the overall carcinogenic risk of a mixture of genotoxic compounds showed that structural similarity would not likely increase the overall cancer risk. A cancer risk model was developed for genotoxic metabolites using excretion material in both animals and humans to determine the probability not exceeding a 1 in 100,000 excess cancer risk. Two model nongenotoxic compounds (fenofibrate and methapyraline) were tested in short-term microarray studies to develop a framework for cancer risk assessment. It was determined that a threshold for potential key events could be derived using benchmark dose analysis in combination with well developed ontologies (Kegg/GO), which were at or below measured tumorigenic and precursor events. In conclusion, informatics was effective in advancing toxicology-based cancer risk assessment using databases and predictive techniques which fill critical gaps in its methodology.
|
599 |
Using Human Embryonic Stem Cells (hESCs) as an In Vitro Model for Environmental Contaminant Embryotoxicity TestingLi, Bai 03 May 2023 (has links)
Early embryo development is one of the most sensitive stages to environmental chemicals during the whole life. Prenatal exposures to many environmental chemicals have been shown to impact fetal development and be associated with adverse health outcomes in later life stages. However, the effects of chemical mixture exposure on developing embryos, especially in early developmental stages, have yet to be fully studied. To fulfill this research gap, my thesis was divided into three data chapters and mainly aimed at investigating the effects of a chemical mixture on human early-stage embryo development. In Chapter 2, I chose methylmercury (MeHg) as the main study toxicant to establish procedures for embryotoxicity testing using human embryonic stem cells (hESCs). I then characterized the effects of low doses of MeHg on this stem cell model by screening a set of cell fate decision-related makers and found MeHg is embryotoxic, which is consistent with epidemiological and in vivo findings. In Chapter 3, I studied the embryotoxicity of a chemical mixture that consists of 23 individual environmental chemicals (including MeHg) detected from the maternal blood samples of pregnant women in Nunavik, labelled as Nunavik Contaminant Mixture (NCM), using the same cell model. The effects of NCM exposure on hESCs were compared to MeHg exposure alone. NCM exposure adversely affected cell viability and adhesion, induced apoptosis, disrupted the cell cycle, altered the expression of cytoskeleton and autophagy proteins, and changed the levels of lineage marker gene and protein expressions in a dose-dependent manner. Some distinct effects on hESCs between NCM exposure and MeHg alone exposure were noticed, and the potential interactions among the chemical components within a chemical mixture were indicated. In Chapter 4, I studied the effects of MeHg exposure during the formation of definitive endoderm (DE) cells from hESCs and compared that to MeHg's effects on undifferentiated hESCs. I found that cell specification towards endoderm could be affected by MeHg exposure, mainly through disrupting calcium homeostasis and over-generating reactive oxygen species, leading to increased ribosome biogenesis and protein synthesis. Moreover, MeHg effects are state-dependent; MeHg enhances pluripotency in undifferentiated hESCs, but it promotes differentiation during DE induction. Taken together, this thesis verifies the value of hESCs in testing the embryotoxicity and developmental toxicity of environmental chemicals, enriches the understanding of the toxicity of MeHg and NCM, emphasizes the necessity of evaluating the effects of chemical mixtures and provides new directions in studying environmental chemical toxicity using stem cells. Findings from my thesis could hopefully contribute to predicting the potential effects of prenatal environmental chemical exposures and aid in developing evidence-based public health policy.
|
600 |
Predictive Factors for Inpatient Aggression by Children and AdolescentsAppel, Kacey 23 August 2022 (has links)
No description available.
|
Page generated in 0.0895 seconds