• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASSESSING THE ROLE OF RIVER TRAINING STRUCTURES – CHEVRON AND DIKE IN THE CREATION AND DIVERSIFICATION OF PHYSICAL AQUATIC HABITATS IN THE MIDDLE MISSISSIPPI RIVER

Karki, Nimisha 01 September 2020 (has links)
The Mississippi River is one of the most intensively managed and altered river systems in the world. The alterations to the Mississippi have been largely made to meet navigation demands and mitigate floods. River training has been undertaken using rock structures, commonly referred to as river training structures (RTS), to modify the shape of the river to maintain the Congressional mandated navigation channel dimensions. In addition to maintaining the navigation channel, newer RTS such as chevrons, have been claimed to be designed as an improvement to the previously existing dikes. They are considered to be tools of improving riverine habitat by increasing physical habitat heterogeneity within the highly engineered and consequently uniform river channel. Thus, to evaluate the differences in physical habitat heterogeneity created by the two RTS; a dike and a chevron, this study models and compares the physical aquatic habitats created along the Middle Mississippi River near Grand Tower, Illinois. The hydraulic modelling software HEC-RAS has been used to develop a two-dimensional model of the study area containing the RTS using detailed 2 m- resolution topobathy digital elevation model (DEM), U.S Geologic Survey’s National Land Cover Database (NLCD), an existing one-dimensional model of the Mississippi and hydrologic data from several hydrologic monitoring stations for the years 2008-2016. Depth and velocity grids were extracted from the HEC-RAS model for three different discharge conditions; 0.5 mean annual flow (MAF) with 40% exceedance probability, MAF with 80% exceedance probability and 1.5 MAF with 15% exceedance probability were used to develop and categorize physical habitat distribution maps of the study area using ArcGIS. The modeled physical aquatic habitat patches were assessed at three buffer distances of 30 m, 90 m, and 150 m from the RTS. The area Simpson diversity and Jaccard similarity indices were calculated for the different discharge conditions and associated habitat mosaics. The distribution of physical habitat modeling revealed a variation in the pattern of habitat patches between the dike and chevron. For the chevron dike evaluated in this study, very-slow deep habitat patches are created in the inner portion of the chevron and slow deep patches around the exterior of the structure which extend both up and downstream of the structure. The dike created slow-deep habitat patches along the structure, very-slow deep patches on the riverbank edge and fast- deep patches on the river side edge. Evaluation of physical habitat patch diversity in relation to the distance from the RTS revealed the highest diversity index values were found within the first 30 m buffer and generally decrease with distance away from the structure. Comparison of the Jaccard index values in vicinity of the two evaluated RTS suggest the habitat patch diversity are similar for both structures at 0.5 MAF and 1.5 MAF flow conditions (index value ranging between 0.60-0.87). However, for the MAF flow conditions the Jaccard index suggests there is more physical habitat patch diversity in the vicinity of the chevron relative to the dike. The modeling results suggest both physical habitat patch richness and diversity declines with an increase in discharge. The decline in physical habitat patch richness and diversity with discharge conditions were greater for the dike relative to the chevron, thus while the chevron retains more types of habitat patches with increase in discharge the diversity indices are still higher for the dike. The modeling also suggests both RTS have created and maintain shallow water habitat (SHW) and overwintering habitat patches (OWH) for the flow conditions evaluated in this study. These habitat patches are utilized by fish species at various life stages. Larger area of OWH habitats; 30% of total area by dikes and 35% of total area by chevrons are created in comparison to SWH; 10% by dike and 7% by chevron. The modeling results show that both the dike and chevron evaluated in this study are associated with and likely maintain ecologically relevant habitats and substantially contribute to physical habitat diversity. If the physical characteristics of the RTS investigated here are similar to other dikes and chevrons along the Mississippi River, the results of this study supports the secondary management objective for these structures, increase in physical aquatic habitat patch diversity, is likely being achieved.
2

Sedimentation patterns and riparian vegetation characteristics in novel ecosystems on the Rhône River, France : A comparative approach to identify drivers and evaluate ecological potentials / Patrons de sédimentation et caractéristiques de la ripisylve dans les casiers Girardon du Rhône : approche comparative pour une analyse des facteurs de contrôle et une évaluation des potentialités écologiques

Räpple, Bianca 08 June 2018 (has links)
A l’image du Rhône au sud-est de la France, les fleuves font l’objet de multiples usages, entrainant des modifications profondes de leurs dynamiques fluviales. Par conséquent, les fonctionnements hydro-sédimentaire et écologique de leurs chenaux ainsi que de leurs plaines alluviales sont altérés. Des programmes intégrés de restauration s’attellent à définir les potentiels et les risques liés à de tels ‘écosystèmes anthropo-construits’ et de comprendre les interactions entre divers facteurs de contrôle ayant influencé leur formation. La présente étude s’est focalisée sur 293 casiers Girardon – des unités rectangulaires délimitées par des digues submersibles longitudinales et latérales construites dans le lit mineur au 19ème siècle afin d’améliorer la navigabilité du Rhône. Ceux-ci sont distribués sur quatre secteurs court-circuités au 20ième siècle pour la production hydro-électrique. Nous avons analysé les patrons spatio-temporels de la sédimentation, ainsi que la structure et la composition des boisements grâce à des données issues de la télédétection et de terrain. Nous proposons également un modèle conceptuel des facteurs de contrôle et des processus potentiels en lien avec les patrons observés. Quatre-vingts pourcents des casiers ont évolué du stade aquatique à un stade terrestre et boisé, suivant des trajectoires historiques variées à la fois inter- et intra-secteurs. Les boisements diffèrent en caractéristiques structurelles de boisements de référence plus naturels. Leur composition est plus proche de celle des systèmes matures que pionniers. Nous observons également une forte présence d’espèces allochtones, comme par exemple l’Érable negundo (Acer negundo), invasive, en particulier dans les stades de régénération. Notre approche comparative constitue une première étape pour démêler les effets cumulatifs des facteurs de contrôle et hiérarchiser leurs rôles individuels. Nous avons constaté que des facteurs locaux jouent un rôle majeur, en particulier la connectivité au chenal principal court-circuité. L’évolution des facteurs environnementaux eux-mêmes a contribué à la complexité des patrons. Ce travail ouvre la voie à des futures études sur des écosystèmes anthropo-construits sur cours d’eau, et donne une nouvelle perspective aux gestionnaires du Rhône relativement à son échelle spatiale innovante. / The multiple uses made of large rivers, such as the Rhône in south-eastern France, have provoked profound modifications of their fluvial dynamics. As a consequence, the hydro-sedimentary and ecological functioning of their channels and floodplains are highly altered. Integrated restoration programmes struggle in defining potentials and risks related to such ‘novel ecosystems’ and to understand the various interacting drivers which influence their formation. This study comparatively focused on 293 dike fields—rectangular units delimited by longitudinal and lateral submersible dikes constructed in the channel in the late 19th century to promote the navigability of the Rhône. They are distributed over four reaches by-passed in the 20th century for hydro-electric energy production. We investigated the spatio-temporal patterns of sediment deposition and the structure and composition of the forest stands using remote sensing and field data. We also propose a conceptual model of potential drivers and processes behind the observed patterns. Eighty percent of the dike fields have evolved from the aquatic to a terrestrial and forested stage, following variable historical trajectories both between and within reaches. The forest stands presented structural characteristics which differed from more natural reference stands and compositional characteristics closer to mature than to pioneer systems. They featured a high presence of non-native species, such as the invasive Box elder (Acer negundo). Our comparative approach constituted a first step to disentangle the cumulative effects of the drivers and define their individual roles: we discovered a prominent role of local factors, especially the connectivity to the main by-passed channel. The evolution of the environmental factors themselves added to the complexity of the patterns. This work provides a basis for future studies of novel ecosystems on rivers, and a new perspective to river managers on the Rhône due to its innovative spatial-scale.
3

Návrh PPO na toku ve správě Povodí Moravy, s.p. / Proposal of flood protection on the river in the basin of the Morava

Salingerová, Lucie January 2017 (has links)
The main aim of the thesis is an appraisal of the stream Oslava which belongs to the Náměšť nad Oslavou region with the focus on flood control of the town. The thesis asseses current state of the stream with respect to the state of riverbed, bulwark of the stream and evaluation of the capacity of the stream channel. Calculation water surface profiles have been made by usage of the 1D mathematical model HEC-RAS for selected N-year flows. The capacity of flows and objects in the given period has been detected. There is also a map of the water runoffs included and possible solutions of how to protect the area surrounding the stream are proposed. The thesis was complemented with hydroecological monitoring of the stream channel - the HEM analysis 2014.

Page generated in 0.0751 seconds