• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Structured Approach to Defining Active Suspension Requirements

Rao, Ashwin M. 13 August 2016 (has links)
Active suspension technologies are well known for improving ride comfort and handling of ground vehicles relative to passive suspensions. They are ideally suited for mitigating single-event road obstacles. The work presented in this thesis aims to develop a structured approach for finding the peak force and bandwidth requirements of actuators for active suspensions, to mitigate single-event road obstacles. The approach is kept general to allow for application to different vehicle models, ride conditions and performance objectives. The current state-of-art in active suspensions was first evaluated. Based on these findings, the objectives of the simulation models and approach was defined. A quarter-car model was developed in Matlab to simulate the behavior of active suspensions over unilateral boundary conditions due to different road obstacle profiles. The obstacle profiles were obtained from existing standards and literature and then processed to replicate the interaction of tires on road. A least-mean-squares (LMS) algorithm for adaptive filtering, with the help of look-ahead preview was used to determine the ideal control force profile to achieve the performance objective of the active suspension. A case study was conducted to determine the requirements of the actuator in terms of bandwidth and peak force for different single-event road obstacle profiles, vehicle speeds and look-ahead preview distances. The results of the study show that the vehicle velocity and type of road obstacle have a strong influence on the required peak force and bandwidth of the actuator, while look-ahead preview will be much more important for real time controller implementation. / Master of Science
2

Intégration de méthodes de représentation et de classification pour la détection et la reconnaissance d'obstacles dans des scènes routières / Integrating representation and classification methods for obstacle detection in road scenes

Besbes, Bassem 16 September 2011 (has links)
Cette thèse s'inscrit dans le contexte de la vision embarquée pour la détection et la reconnaissance d'obstacles routiers, en vue d'application d'assistance à la conduite automobile.A l'issue d'une étude bibliographique, nous avons constaté que la problématique de détection d'obstacles routiers, notamment des piétons, à l'aide d'une caméra embarquée, ne peut être résolue convenablement sans recourir aux techniques de reconnaissance de catégories d'objets dans les images. Ainsi, une étude complète du processus de la reconnaissance est réalisée, couvrant les techniques de représentation,de classification et de fusion d'informations. Les contributions de cette thèse se déclinent principalement autour de ces trois axes.Notre première contribution concerne la conception d'un modèle d'apparence locale basée sur un ensemble de descripteurs locaux SURF (Speeded Up RobustFeatures) représentés dans un Vocabulaire Visuel Hiérarchique. Bien que ce modèle soit robuste aux larges variations d'apparences et de formes intra-classe, il nécessite d'être couplé à une technique de classification permettant de discriminer et de catégoriser précisément les objets routiers. Une deuxième contribution présentée dans la thèse porte sur la combinaison du Vocabulaire Visuel Hiérarchique avec un classifieur SVM.Notre troisième contribution concerne l'étude de l'apport d'un module de fusion multimodale permettant d'envisager la combinaison des images visibles et infrarouges.Cette étude met en évidence de façon expérimentale la complémentarité des caractéristiques locales et globales ainsi que la modalité visible et celle infrarouge.Pour réduire la complexité du système, une stratégie de classification à deux niveaux de décision a été proposée. Cette stratégie est basée sur la théorie des fonctions de croyance et permet d'accélérer grandement le temps de prise de décision.Une dernière contribution est une synthèse des précédentes : nous mettons à profit les résultats d'expérimentations et nous intégrons les éléments développés dans un système de détection et de suivi de piétons en infrarouge-lointain. Ce système a été validé sur différentes bases d'images et séquences routières en milieu urbain. / The aim of this thesis arises in the context of Embedded-vision system for road obstacles detection and recognition : application to driver assistance systems. Following a literature review, we found that the problem of road obstacle detection, especially pedestrians, by using an on-board camera, cannot be adequately resolved without resorting to object recognition techniques. Thus, a preliminary study of the recognition process is presented, including the techniques of image representation, Classification and information fusion. The contributions of this thesis are organized around these three axes. Our first contribution is the design of a local appearance model based on SURF (Speeded Up Robust Features) features and represented in a hierarchical Codebook. This model shows considerable robustness with respect to significant intra-class variation of object appearance and shape. However, the price for this robustness typically is that it tends to produce a significant number of false positives. This proves the need for integration of discriminative techniques in order to accurately categorize road objects. A second contribution presented in this thesis focuses on the combination of the Hierarchical Codebook with an SVM classifier.Our third contribution concerns the study of the implementation of a multimodal fusion module that combines information from visible and infrared spectrum. This study highlights and verifies experimentally the complementarities between the proposed local and global features, on the one hand, and visible and infrared spectrum on the other hand. In order to reduce the complexity of the overall system, a two-level classification strategy is proposed. This strategy, based on belieffunctions, enables to speed up the classification process without compromising there cognition performance. A final contribution provides a synthesis across the previous ones and involves the implementation of a fast pedestrian detection systemusing a far-infrared camera. This system was validated with different urban road scenes that are recorded from an onboard camera.

Page generated in 0.0454 seconds