• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using supervised learning algorithms to model the behavior of Road Weather Information System sensors

Axelsson, Tobias January 2018 (has links)
Trafikverket, the agency in charge of state road maintenance in Sweden, have a number of so-called Road Weather Information Systems (RWIS). The main purpose of the stations is to provide winter road maintenance workers with information to decide when roads need to be plowed and/or salted. Each RWIS have a number of sensors which make road weather-related measurements every 30 minutes. One of the sensors is dug into the road which can cause traffic disturbances and be costly for Trafikverket. Other RWIS sensors fail occasionally. This project aims at modelling a set of RWIS sensors using supervised machine learning algorithms. The sensors that are of interest to model are: Optic Eye, Track Ice Road Sensor (TIRS) and DST111. Optic Eye measures precipitation type and precipitation amount. Both TIRS and DST111 measure road surface temperature. The difference between TIRS and DST111 is that the former is dug into the road, and DST111 measures road surface temperature from a distance via infrared laser. Any supervised learning algorithm trained to model a given measurement made by a sensor, may only train on measurements made by the other sensors as input features. Measurements made by TIRS may not be used as input in modelling other sensors, since it is desired to see if TIRS can be removed. The following input features may also be used for training: road friction, road surface condition and timestamp. Scikit-learn was used as machine learning software in this project. An experimental approach was chosen to achieve the project results: A pre-determined set of supervised algorithms were compared using different amount of top relevant input features and different hyperparameter settings. Prior to achieving the results, a data preparation process was conducted. Observations with suspected or definitive errors were removed in this process. During the data preparation process, the timestamp feature was transformed into two new features: month and hour. The results in this project show that precipitation type was best modelled using Classification And Regression Tree (CART) on Scikit-learn default settings, achieving a performance score of Macro-F1test = 0.46 and accuracy = 0.84 using road surface condition, road friction, DST111 road surface temperature, hour and month as input features. Precipitation amount was best modelled using k-Nearest Neighbor (kNN); with k = 64 and road friction used as the only input feature, a performance score of MSEtest = 0.31 was attained. TIRS road surface temperature was best modelled with Multi-Layer Perceptron (MLP) using 64 hidden nodes and DST111 road surface temperature, road surface condition, road friction, month, hour and precipitation type as input features, with which a performance score of MSEtest = 0.88 was achieved. DST111 road surface temperature was best modelled using Random forest on Scikit-learn default settings with road surface condition, road friction, month, precipitation type and hour as input features, achieving a performance score of MSEtest = 10.16.
2

Multi-Bayesian Approach to Stochastic Feature Recognition in the Context of Road Crack Detection and Classification

Steckenrider, John J. 04 December 2017 (has links)
This thesis introduces a multi-Bayesian framework for detection and classification of features in environments abundant with error-inducing noise. The approach takes advantage of Bayesian correction and classification in three distinct stages. The corrective scheme described here extracts useful but highly stochastic features from a data source, whether vision-based or otherwise, to aid in higher-level classification. Unlike many conventional methods, these features’ uncertainties are characterized so that test data can be correctively cast into the feature space with probability distribution functions that can be integrated over class decision boundaries created by a quadratic Bayesian classifier. The proposed approach is specifically formulated for road crack detection and characterization, which is one of the potential applications. For test images assessed with this technique, ground truth was estimated accurately and consistently with effective Bayesian correction, showing a 33% improvement in recall rate over standard classification. Application to road cracks demonstrated successful detection and classification in a practical domain. The proposed approach is extremely effective in characterizing highly probabilistic features in noisy environments when several correlated observations are available either from multiple sensors or from data sequentially obtained by a single sensor. / Master of Science / Humans have an outstanding ability to understand things about the world around them. We learn from our youngest years how to make sense of things and perceive our environment even when it is not easy. To do this, we inherently think in terms of probabilities, updating our belief as we gain new information. The methods introduced here allow an autonomous system to think similarly, by applying a fairly common probabilistic technique to the task of perception and classification. In particular, road cracks are observed and classified using these methods, in order to develop an autonomous road condition monitoring system. The results of this research are promising; cracks are identified and correctly categorized with 92% accuracy, and the additional “intelligence” of the system leads to a 33% improvement in road crack assessment. These methods could be applied in a variety of contexts as the leading edge of robotics research seeks to develop more robust and human-like ways of perceiving the world.
3

Degenerate Near-planar Road Surface 3D Reconstruction and Automatic Defects Detection

Hu, Yazhe 02 June 2020 (has links)
This dissertation presents an approach to reconstruct degenerate near-planar road surface in three-dimensional (3D) while automatically detect road defects. Three techniques are developed in this dissertation to establish the proposed approach. The first technique is proposed to reconstruct the degenerate near-planar road surface into 3D from one camera. Unlike the traditional Structure from Motion (SfM) technique which has the degeneracy issue for near-planar object 3D reconstruction, the uniqueness of the proposed technique lies in the use of near-planar characteristics of surfaces in the 3D reconstruction process, which solves the degenerate road surface reconstruction problem using only two images. Following the accuracy-enhanced 3D reconstructed road surface, the second technique automatically detects and estimates road surface defects. As the 3D surface is inversely solved from 2D road images, the detection is achieved by jointly identifying irregularities from the 3D road surfaces and the corresponding image information, while clustering road defects and obstacles using a mean-shift algorithm with flat kernel to estimate the depth, size, and location of the defects. To enhance the physics-driven automatic detection reliability, the third technique proposes and incorporates a self-supervised learning structure with data-driven Convolutional Neural Networks (CNN). Different from supervised learning approaches which need labeled training images, the road anomaly detection network is trained by road surface images that are automatically labeled based on the reconstructed 3D surface information. In order to collect clear road surface images on the public road, a road surface monitoring system is designed and integrated for the road surface image capturing and visualization. The proposed approach is evaluated in both simulated environment and through real-world experiments. The parametric study of the proposed approach shows the small error of the 3D road surface reconstruction influenced by different variables such as the image noise, camera orientation, and the vertical movement of the camera in a controlled simulation environment. The comparison with traditional SfM technique and the numerical results of the proposed reconstruction using real-world road surface images then indicate that the proposed approach effectively reconstructs high quality near-planar road surface while automatically detects road defects with high precision, accuracy, and recall rates without the degenerate issue. / Doctor of Philosophy / Road is one of the key infrastructures for ground transportation. A good road surface condition can benefit mainly on three aspects: 1. Avoiding the potential traffic accident caused by road surface defects, such as potholes. 2. Reducing the damage to the vehicle initiated by the bad road surface condition. 3. Improving the driving and riding comfort on a healthy road surface. With all the benefits mentioned above, it is important to examine and check the road surface quality frequently and efficiently to make sure that the road surface is in a healthy condition. In order to detect any road surface defects on public road in time, this dissertation proposes three techniques to tackle the road surface defects detection problem: First, a near-planar road surface three-dimensional (3D) reconstruction technique is proposed. Unlike traditional 3D reconstruction technique, the proposed technique solves the degenerate issue for road surface 3D reconstruction from two images. The degenerate issue appears when the object reconstructed has near-planar surfaces. Second, after getting the accuracy-enhanced 3D road surface reconstruction, this dissertation proposes an automatic defects detection technique using both the 3D reconstructed road surface and the road surface image information. Although physics-based detection using 3D reconstruction and 2D images are reliable and explainable, it needs more time to process these data. To speed up the road surface defects detection task, the third contribution is a technique that proposes a self-supervised learning structure with data-driven Convolutional Neural Networks (CNN). Different from traditional neural network-based detection techniques, the proposed combines the 3D road information with the CNN output to jointly determine the road surface defects region. All the proposed techniques are evaluated using both the simulation and real-world experiments. Results show the efficacy and efficiency of the proposed techniques in this dissertation.

Page generated in 0.1246 seconds