• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions

Kennedy, James Bernard January 2010 (has links)
Doctor of Philosophy / We consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
2

On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions

Kennedy, James Bernard January 2010 (has links)
Doctor of Philosophy / We consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
3

Approximations numériques en situations complexes : applications aux plasmas de tokamak / Numerical approximations in complex situations : applications to tokamak plasmas

Bensiali, Bouchra 11 July 2014 (has links)
Motivée par deux problématiques liées aux plasmas de tokamak, cette thèse propose deux méthodes d'approximation numérique pour deux problèmes mathématiques s'y rattachant. D'une part, pour l'étude du transport turbulent de particules, une méthode numérique basée sur les schémas de subdivision est présentée pour la simulation de trajectoires de particules dans un champ de vitesse fortement variable. D'autre part, dans le cadre de la modélisation de l'interaction plasma-paroi, une méthode de pénalisation est proposée pour la prise en compte de conditions aux limites de type Neumann ou Robin. Analysées sur des problèmes modèles de complexité croissante, ces méthodes sont enfin appliquées dans des situations plus réalistes d'intérêt pratique dans l'étude du plasma de bord. / Motivated by two issues related to tokamak plasmas, this thesis proposes two numerical approximation methods for two mathematical problems associated with them. On the one hand, in order to study the turbulent transport of particles, a numerical method based on subdivision schemes is presented for the simulation of particle trajectories in a strongly varying velocity field. On the other hand, in the context of modeling the plasma-wall interaction, a penalization method is proposed to take into account Neumann or Robin boundary conditions. Analyzed on model problems of increasing complexity, these methods are finally applied in more realistic situations of practical interest in the study of the edge plasma.
4

Multiscale methods for oil reservoir simulation / Método multiescala para simulações de reservatórios de petróleo

Guiraldello, Rafael Trevisanuto 26 March 2019 (has links)
In this thesis a multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed, the Multiscale Robin Coupled Method (MRCM). The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The method allows for the independent definition of interface spaces for pressure and flux over the skeleton of the decomposition that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. Numerical simulations are presented aiming at illustrating several features of the new method. We illustrate the possibility to recover the multiscale solution of two wellknown methods of the literature, namely, the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method by suitable choices of the parameter b in the Robin interface conditions. Results show that the accuracy of the MRCM depends on the choice of this algorithmic parameter as well as on the choice of the interface spaces. An extensive numerical assessment of the MRCM is conduct with two types of interface spaces, the usual piecewise polynomial spaces and the informed spaces, the latter obtained from sets of snapshots by dimensionality reduction. Different distributions of the unknowns between pressure and flux are explored. The results show that b, suitably nondimensionalized, can be fixed to unity to avoid any indeterminacy in the method. Further, with both types of spaces, it is observed that a balanced distribution of the interface unknowns between pressure and flux renders the MRCM quite attractive both in accuracy and in computational cost, competitive with other multiscale methods from the literature. The MRCM solutions are in general only global conservative. Two postprocessing procedures are proposed to recover local conservation of the multiscale velocity fields. We investigate the applicability of such methods in highly heterogeneous permeability fields in modeling the contaminant transport in the subsurface. These methods are compared to a standard procedure. Results indicate that the proposed methods have the potential to produce more accurate results than the standard method with similar or reduced computational cost. / Nesta tese é proposto um método misto multiescala visando a aproximação precisa de campos de velocidade e pressão em meios porosos altamente heterogêneos, o método Multiscale Robin Coupled Method (MRCM). Este procedimento é baseado em um novo método de decomposição de domínio no qual os problemas locais são definidos com condições de contorno de Robin. O método permite a definição independente de espaços de interface para pressão e fluxo sobre o esqueleto da decomposição que pode ser escolhida com grande flexibilidade para acomodar características locais dos campos de permeabilidade subjacentes. Simulações numéricas são apresentadas visando ilustrar várias características do novo método. Ilustramos a possibilidade de recuperar a solução multiescala de dois métodos bem conhecidos da literatura, a saber, o Multiscale Mortar Mixed Finite Element Method (MMMFEM) e o Multiscale Hybrid-Mixed (MHM) Finite Element Method por escolhas adequadas do parâmetro b nas condições da interface de Robin. Os resultados mostram que a precisão do MRCM depende da escolha deste parâmetro algorítmico, bem como da escolha dos espaços de interface. Uma extensa avaliação numérica do MRCM é conduzida com dois tipos de espaços de interface, os usuais espaços polinomiais por partes e os espaços informados, este último obtidos a partir da redução de dimensionalidade de conjutos de espaços de snapshots. Diferentes distribuições de incógnitas entre pressão e fluxo são exploradas. Os resultados mostram que b, adequadamente adimensionalizado, pode ser fixado em unidade para evitar qualquer indeterminação no método. Além disso, com ambos os tipos de espaços, observa-se que uma distribuição equilibrada de incógnita entre pressão e fluxo nas interfaces torna o MRCM bastante atraente tanto em precisão quanto em custo computacional, competitivo com outros métodos multiescala da literatura. As soluções MRCM são, em geral, apenas globalmente conservativas. Dois procedimentos de pós-processamento são propostos para recuperar a conservação local dos campos de velocidade multiescala. Investigamos a aplicabilidade de tais métodos em campos de permeabilidade altamente heterogêneos na modelagem do transporte de contaminantes na subsuperfície. Esses métodos são comparados a um procedimento padrão da literatura. Os resultados indicam que os métodos propostos têm o potencial de produzir resultados mais precisos do que o método padrão com custo computacional similar ou reduzido.

Page generated in 0.1398 seconds