1 |
Generalised Robinson-Trautman and Kundt waves and their physical interpretationDocherty, Peter January 2004 (has links)
In this thesis, Newman-Penrose techniques are used to obtain some new exact solutions to Einstein's field equations of general relativity and to assist in the physical interpretation of some exact radiative space-times. Attention is restricted to algebraically special space-times with a twist-free, repeated principal null congruence. In particular, the Robinson-Trautman type N solutions, which describe expanding gravitational waves, are investigated for all possible values of the cosmological constant A and the Gaussian curvature parameter E. The wave surfaces are always (hemi-)spherical, with successive surfaces displaced along time-like, space-like or null lines, depending on E. Explicit sandwich waves of this class are studied in Minkowski, de Sitter or anti-de Sitter backgrounds and a particular family of such solutions, which can be used to represent snapping or decaying cosmic strings, is considered in detail. The singularity and global structure of the solutions is also presented. In the remaining part of the thesis, the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves), that are of algebraic type III and for which the cosmological constant (Ac) is non-zero, is presented. The possible presence of an aligned pure radiation field is also assumed. These space-times generalise the known vacuum solutions of type N with arbitrary Ac and type III with Ac = O. It is shown that there are two, one and three distinct classes of solutions when Ac is respectively zero, positive and negative and, in these cases, the wave surfaces are plane, spherical or hyperboloidal in Minkowski, de Sitter or anti-de Sitter backgrounds respectively. The singularities which occur in these space-times are interpreted in terms of envelopes of these wave surfaces. Again, by considering functions of the retarded time which "cross-over" between canonical types, sandwich waves are also studied. The limiting cases of these, giving rise to shock or impulsive waves, are also considered.
|
2 |
Einsteinova gravitace ve více dimenzích / Higher-dimensional Einstein gravityŠtrupl, František January 2011 (has links)
In the present work, we study some aspects of Einstein's theory of gravitation in general spacetimes with an arbitrary number of dimensions. In the first chapter we summarize the foundations of used geometric formalism and we derive the equation of goedesic deviation representing the relation between relative acceleration and the Riemann tensor. Second chapter presents different types of algebraic classification of the Weyl tensor in four and higher dimensions. Third chapter is devoted to a detailed examination of the test particle motions and also to the interpretation of different terms in the general equation of geodesic deviation. The fourth section examines appropriate choice of the interpretation frame and the coordinates. The final fifth chapter contains an analysis of the motion of test particles in the Robinson-Trautman spacetime with an arbitrary higher number of dimensions.
|
3 |
Emissão de ondas gravitacionais por fontes compactas: o regime não-linear / Gravitational wave emission from compact sources: the non-linear regimeMacedo, Rodrigo Panosso 31 January 2011 (has links)
A colisão de buracos negros é uma das fontes mais importantes de ondas gravitacionais e, em geral, a emissão anisotrópica da radiação causa um recuo do objeto final. Este cenário já é conhecido há décadas, mas foi somente com o recente avanço na relatividade numérica que as velocidades finais dos objetos radiantes foram computadas com precisão. Os valores encontrados podem ser altos o suficiente para exercerem um importante papel no crescimento de buracos negros super massivos via coleção de galáxias e na abundância de núcleos galáticos ativos contendo buracos negros. Este é um autêntico efeito da não linearidade de Relatividade Geral e esta tese fornece uma nova metodologia estudar alguns aspectos da dinâmica da colisão de buracos negros. Consideramos o horizonte como uma tela canônica que codifica as informações da evolução temporal do espaço-tempo. Com esta hipótese, fenômenos como o anti-kick, isto é, uma súbita desaceleração do sistema antes de atingir a velocidade final, são explicado em termos da dissipação das deformações do horizonte. Estudamos primeiramente o Espaço-tempo de Robinson-Trautman. Uma das solução mais simples das equações de Einstein, esta métrica nos fornece um poderoso modelo para investigar tanto a perda de massa quanto o recuo do objeto final. Mostramos que, quando as configurações iniciais tem simetria especular, a massa do buraco negro remanescente e a energia irradiada são completamente determinadas pela condição inicial. Com isso, obtemos as expressões analíticas dos resultados numéricos obtidos anteriormente na literatura. Além disto, com o auxilio do método espectral de Galerkin, analisamos o regime não linear das equações envolvidas e verificamos que se pode estimar a velocidade de recuo final com boa precisão a partir de medidas da assimetria da condição inicial. Introduzimos na seqüência a curvatura efetiva como uma medida das deformações intrínsecas ao horizonte. Além de considerar as deformações gerais, ela também inclui as diferenças entre os hemisférios norte e sul. No espaço-tempo de Robinson-Trautman, essa quantidade se correlaciona de uma forma injetora com a velocidade final. Para superar algumas limitações dessa solução, aplicamos o mesmo procedimento nos resultados da simulação numérica de uma colisão head-on. Neste caso, a curvatura efetiva, está na realidade, correlacionada com a aceleração do sistema. Refinamentos e generalizações desta técnica são também discutidos e propostos para trabalhos futuros. / Colliding black holes are one of the most important sources of gravitational waves and the anisotropic emission of the radiation generally causes the recoil of the final hole. This scenario has been known for decades, but it is only thanks to the recent progress in numerical relativity that the final velocity have been accurately computed. The values found can be large enough to play an important role in the growth of supermassive black holes via mergers of galaxies and on the number of galaxies containing them. This is a genuine nonlinear effect of general relativity and this thesis provides a new methodology to study some features on the dynamics of the collision. We propose that the horizon is a canonical screen, which encodes he information of its surroundings. With this assumption, phenomena such as the anti-kick, namely the sudden deceleration before reaching the final velocity, are explained in terms of the dissipation of the horizons deformation. We first study the Robinson-Trautman spacetime. One of the simplest solutions of Einsteins equations, it provides us with a powerful toymodel to investigate both the mass loss of the system and the recoil of the final object. We show that, for the case of reflectionsymmetric initial configurations, the mass of the remnant black-hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some numerical results that had appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the non-linear regime of the equations involved, we found that the recoil velocity can be estimated with good accuracy from some symmetry measures of the initial data. Then we introduce the effective urvature as a measure of intrinsic deformations on the horizon. Not only does it account for overall deformation, but also for the differences on the north and south hemispheres. In the Robinson-Trautman spacetime, this quantity correlates in an injective way with the final velocity. To overcome some caveats of this solutions, we apply the same procedure to the results given by numerical simulations of a head-on collision. In the case, the effective curvature is actually correlated with the acceleration of the system. Further improvement and generalizations of this technic is also discussed and proposed for future work.
|
4 |
Studium přesných prostoročasů / Study of Exact SpacetimesŠvarc, Robert January 2012 (has links)
In this work we study various aspects of the behaviour of free test particles in Einstein's general relativity and analyze specific physical properties of the background spacetimes. In the first part we investigate geodesic motions in the four-dimensional constant curvature spacetimes, i.e., Minkowski and (anti-)de Sitter universe, with an expanding impulsive gravitational wave. We derive the simple refraction formulae for particles crossing the impulse and describe the effect of nonvanishig cosmological constant. In the second part of this work we present a general method useful for geometrical and physical interpretation of arbitrary spacetimes in any dimension. It is based on the systematic analysis of the relative motion of free test particles. The equation of geodesic deviation is rewritten with respect to the natural orthonormal frame. We discuss the contributions given by a specific algebraic structure of the curvature tensor and the matter content of the universe. This formalism is subsequently used for investigation of the large class of nontwisting spacetimes. In particular, we analyse the motions in the nonexpanding Kundt and expanding Robinson--Trautman family of solutions.
|
5 |
Emissão de ondas gravitacionais por fontes compactas: o regime não-linear / Gravitational wave emission from compact sources: the non-linear regimeRodrigo Panosso Macedo 31 January 2011 (has links)
A colisão de buracos negros é uma das fontes mais importantes de ondas gravitacionais e, em geral, a emissão anisotrópica da radiação causa um recuo do objeto final. Este cenário já é conhecido há décadas, mas foi somente com o recente avanço na relatividade numérica que as velocidades finais dos objetos radiantes foram computadas com precisão. Os valores encontrados podem ser altos o suficiente para exercerem um importante papel no crescimento de buracos negros super massivos via coleção de galáxias e na abundância de núcleos galáticos ativos contendo buracos negros. Este é um autêntico efeito da não linearidade de Relatividade Geral e esta tese fornece uma nova metodologia estudar alguns aspectos da dinâmica da colisão de buracos negros. Consideramos o horizonte como uma tela canônica que codifica as informações da evolução temporal do espaço-tempo. Com esta hipótese, fenômenos como o anti-kick, isto é, uma súbita desaceleração do sistema antes de atingir a velocidade final, são explicado em termos da dissipação das deformações do horizonte. Estudamos primeiramente o Espaço-tempo de Robinson-Trautman. Uma das solução mais simples das equações de Einstein, esta métrica nos fornece um poderoso modelo para investigar tanto a perda de massa quanto o recuo do objeto final. Mostramos que, quando as configurações iniciais tem simetria especular, a massa do buraco negro remanescente e a energia irradiada são completamente determinadas pela condição inicial. Com isso, obtemos as expressões analíticas dos resultados numéricos obtidos anteriormente na literatura. Além disto, com o auxilio do método espectral de Galerkin, analisamos o regime não linear das equações envolvidas e verificamos que se pode estimar a velocidade de recuo final com boa precisão a partir de medidas da assimetria da condição inicial. Introduzimos na seqüência a curvatura efetiva como uma medida das deformações intrínsecas ao horizonte. Além de considerar as deformações gerais, ela também inclui as diferenças entre os hemisférios norte e sul. No espaço-tempo de Robinson-Trautman, essa quantidade se correlaciona de uma forma injetora com a velocidade final. Para superar algumas limitações dessa solução, aplicamos o mesmo procedimento nos resultados da simulação numérica de uma colisão head-on. Neste caso, a curvatura efetiva, está na realidade, correlacionada com a aceleração do sistema. Refinamentos e generalizações desta técnica são também discutidos e propostos para trabalhos futuros. / Colliding black holes are one of the most important sources of gravitational waves and the anisotropic emission of the radiation generally causes the recoil of the final hole. This scenario has been known for decades, but it is only thanks to the recent progress in numerical relativity that the final velocity have been accurately computed. The values found can be large enough to play an important role in the growth of supermassive black holes via mergers of galaxies and on the number of galaxies containing them. This is a genuine nonlinear effect of general relativity and this thesis provides a new methodology to study some features on the dynamics of the collision. We propose that the horizon is a canonical screen, which encodes he information of its surroundings. With this assumption, phenomena such as the anti-kick, namely the sudden deceleration before reaching the final velocity, are explained in terms of the dissipation of the horizons deformation. We first study the Robinson-Trautman spacetime. One of the simplest solutions of Einsteins equations, it provides us with a powerful toymodel to investigate both the mass loss of the system and the recoil of the final object. We show that, for the case of reflectionsymmetric initial configurations, the mass of the remnant black-hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some numerical results that had appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the non-linear regime of the equations involved, we found that the recoil velocity can be estimated with good accuracy from some symmetry measures of the initial data. Then we introduce the effective urvature as a measure of intrinsic deformations on the horizon. Not only does it account for overall deformation, but also for the differences on the north and south hemispheres. In the Robinson-Trautman spacetime, this quantity correlates in an injective way with the final velocity. To overcome some caveats of this solutions, we apply the same procedure to the results given by numerical simulations of a head-on collision. In the case, the effective curvature is actually correlated with the acceleration of the system. Further improvement and generalizations of this technic is also discussed and proposed for future work.
|
6 |
Schwarzschildovy-Bachovy černé díry / Schwarzschild-Bach black holesKnoška, Šimon January 2021 (has links)
Šimon Knoška The spherically symmetric spacetimes represent one of the most important classes of solutions in general relativity. Therefore, it is very natural to study them also in the context of modified theories of gravity. We directly continue in the previous works in quadratic gravity, where the generalised solutions with the constant Ricci scalar were found in the form of power series expansion in the conformal coordinates. In this work, we have found an alternative expression of this solution in the Robinson-Trautman-like coordinates analogously in the form of power series expansion around the horizon. Al- though the prescribed recurrent power series solution is more complicated than that in the conformal-to-Kundt coordinates, it posses numerous advantages. Namely, the trans- formation to the Schwarzschild-like coordinates is considerable simple and the physical interpretation of the coordinates is more evident. These properties are demonstrated in the preliminary investigation of the geodesic motion of the test particles near the black hole with analysis of the effect of the so-called Bach parameter. In particular, we have observed that the Bach parameter together with the positive cosmological constant Λ > 0 has a significant impact on the global structure of the spacetime.
|
7 |
Matematické metody a přesné prostoročasy v kvadratické gravitaci / Mathematical methods and exact spacetimes in quadratic gravityMiškovský, David January 2021 (has links)
Within this work we have been interested in the frame approach to analysis of the field equations in the context of theories of gravity, in particular, the Einstein General Relativ- ity and Quadratic theory of gravity. As the starting point we have summarised the least action principle formulation of the General Relativity and introduced the Quadratic grav- ity extending the classic Einstein-Hilbert action by adding quadratic curvature terms. The Quadratic gravity field equation have been rewritten into the form separating the Ricci tensor contribution. As a next step we have reviewed the Newman-Penrose formal- ism on a purely geometrical level and discussed employing the field equations constraints. While in the case of General Relativity it is quite trivial, in the Quadratic gravity it be- comes much more involved, however, the General Relativity procedure can be followed even here. As an illustration, we have formulated the constraints on the gravitational field in the cases of the spherically symmetric spacetimes and so-called pp-waves both in the GR as well as Quadratic gravity. 1
|
8 |
Nevakuová přesná řešení / Exact solutions with matter fieldsKokoška, David January 2021 (has links)
In this thesis we investigate Robinson-Trautman solutions of Einstein's gravity cou- pled to a matter field in higher dimensions, specifically a conformally invariant and non- linear electromagnetic field. The latter possesses in general a non-zero energy-momentum tensor, which provides a source term in Einstein's equations. We focus concretely on an electromagnetic field aligned with the null vector field generating the expanding con- gruence of Robinson-Trautman spacetimes. At the beginning, we review the concept of optical scalars for a null vector field in higher dimensions and we use those to define the higher-dimensional Robinson-Trautman class of spacetimes. Next, we solve the corre- sponding Einstein's equations and present the complete family of exact solutions of the theory under consideration. We then contrast the obtained results with the known ones for the linear Maxwell theory in higher dimensions. As a check, we also compare our results to the well-known results in D = 4, since in this case our matter theory reduces to the standard linear Maxwell theory. Finally, we study properties of a subfamily of solutions which represent the static black holes within our class. In particular, we ana- lyze the asymptotic behaviour, we show that a curvature singularity is always present for r → 0 and the...
|
Page generated in 0.0521 seconds