Spelling suggestions: "subject:"robotics inn sports"" "subject:"robotics iin sports""
1 |
Coaching : learning and using environment and agent models for advice /Riley, Patrick. January 1900 (has links)
Thesis (Ph. D.)--Carnegie Mellon University, 2005. / "March 31, 2005." Includes bibliographical references.
|
2 |
Robotic environments for training and assessing the human motor systemLiu, Jiayin. January 2006 (has links)
Thesis (Ph. D.)--University of California, Irvine, 2006. / Includes bibliographical references (leaves 152-162).
|
3 |
RoboCup formation modelingKriek, Andre 03 1900 (has links)
Thesis (MSc (Mathematical Sciences. Computer Science))--University of Stellenbosch, 2009. / Since the late 1990s, the Robot Soccer World Cup has been used as a testing ground
for new technology in the eld of robotic design and arti cial intelligence. This research
initiative pits two teams of robots against each other in a game of soccer. It is hoped
that the technology gained will enable the construction of a fully autonomous team of
robot players to play a normal soccer game against a human team by the year 2050.
In robot soccer matches, as in real soccer matches, inferring an opponent's strategy
can give a team a major advantage. One important aspect of a team's strategy is the
formation the team uses. Knowing the formations that an opposing team tends to take,
enables a team to prepare appropriate countermeasures.
This thesis will investigate methods to extract formation information from a completed
soccer game.
The results show that these methods can be used to infer a classical team formation,
as well as other distinguishing characteristics of the players, such as which areas on the
eld the players tend to occupy, or the players' movement patterns - both valuable items
of information for a future opposition team.
|
4 |
Robocup small size league : active ball handling systemSmit, Daniel Gideon Hugo 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The RoboCup offers a research platform to advance robotics and multi-robot
cooperation in dynamic environments. This project builds on work previously
done to develop a research platform for multi-robot cooperation at Stellenbosch
University. This thesis describes the development of an active ball handling
system for a robot in the RoboCup Small Size League (SSL). This was achieved
by building on the work done in the previous projects.
The hardware for the kicker and dribbler mechanisms on the robot were
implemented and tested to characterise their capabilities. The kicker was
characterised to control the speed at which a ball is kicked and the dribbler
for optimal control over a ball. More accurate movement was required and the
Proportional Integral and Derivative (PID) controllers for translational and
rotational movement on the robot were improved. The test results show an
improvement in straight line trajectory tracking when compared to those of the
previous controllers. Dribble control sensors were implemented on the robot for
successful dribbling by the robot. This resulted in a significant improvement to
the dribbling ability of the robot when these sensors are used. This dribbling
ability was compared to the dribbling ability of the robot when no feedback
was received from the sensors. Lastly a proposed curved trajectory tracking
algorithm was tested by combining translational and rotational movement of
the robot. This algorithm showed the capabilities of the robot to follow a
curved trajectory with the improved translational and rotational controllers. / AFRIKAANSE OPSOMMING: Die RoboCup bied ’n navorsingsplatvorm om robotika en multi-robot samewerking
in ’n dinamiese omgewing te bevorder. Hierdie projek bou voort op
werk wat reeds gedoen is om ’n navorsingsplatvorm vir multi-robot samewerking
aan die Universiteit van Stellenbosch te ontwikkel. Hierdie tesis beskryf die
ontwikkeling van ’n aktiewe balhanteringsstelsel vir ’n robot in die RoboCup
Klein Liga (KL). Dit is bereik deur voort te bou op die werk wat in vorige
projekte gedoen is.
Die hardeware vir die skopper- en dribbelmeganismes is geïmplementeer
en getoets om hulle vermoëns te karakteriseer. Die skopper is gekenmerk deur
die spoed waarteen ’n bal geskop word en die dribbler vir optimale beheer
oor ’n bal. Meer akkurate beweging was nodig en die PID-beheerders vir
translasie- en rotasiebeweging in die robot is verbeter. Die resultate van die
toetse toon ’n verbetering in reguitlynbeweging in vergelyking met dié van die
vorige beheerders. Dribbelbeheersensors is in die robot geïmplementeer vir
suksesvolle dribbelbeweging deur die robot. Gevolglik is daar ’n aansienlike
verbetering in die dribbelvermoë van die robot wanneer hierdie sensors gebruik
word. Hierdie dribbelvermoë is vergelyk met die dribbelvermoë wanneer die
robot geen terugvoer van die sensors ontvang nie. Laastens is ’n voorgestelde
algoritme vir die robot om ’n geboë trajek te volg, getoets. Dit is bereik deur
die translasie- en die rotasiebeweging van die robot te kombineer. Hierdie
algoritme het die vermoë van die robot om ’n geboë baan te laat volg deur
gebruik te maak van die verbeterde translasie- en rotasiebeheerders.
|
Page generated in 0.0666 seconds