• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation stochastique et adaptative pour surveillance coopérative par une équipe de micro-véhicules aériens

Renzaglia, Alessandro 27 April 2012 (has links) (PDF)
L'utilisation d'équipes de robots a pris de l'ampleur ces dernières années. Cela est dû aux avantages que peut offrir une équipe de robot par rapport à un robot seul pour la réalisation d'une même tâche. Cela s'explique aussi par le fait que ce type de plates-formes deviennent de plus en plus abordables et fiables. Ainsi, l'utilisation d'une équipe de véhicules aériens devient une alternative viable. Cette thèse se concentre sur le problème du déploiement d'une équipe de Micro-Véhicules Aériens (MAV) pour effectuer des missions de surveillance sur un terrain inconnu de morphologie arbitraire. Puisque la morphologie du terrain est inconnue et peut être complexe et non-convexe, les algorithmes standards ne sont pas applicables au problème particulier traité dans cette thèse. Pour y remédier, une nouvelle approche basée sur un algorithme d'optimisation cognitive et adaptatif (CAO) est proposée et évaluée. Une propriété fondamentale de cette approche est qu'elle partage les mêmes caractéristiques de convergence que les algorithmes de descente de gradient avec contraintes qui exigent une connaissance parfaite de la morphologie du terrain pour optimiser la couverture. Il est également proposé une formulation différente du problème afin d'obtenir une solution distribuée, ce qui nous permet de surmonter les inconvénients d'une approche centralisée et d'envisager également des capacités de communication limitées. De rigoureux arguments mathématiques et des simulations étendues établissent que l'approche proposée fournit une méthodologie évolutive et efficace qui intègre toutes les contraintes physiques particulières et est capable de guider les robots vers un arrangement qui optimise localement la surveillance. Finalement, la méthode proposée est mise en œuvre sur une équipe de MAV réels pour réaliser la surveillance d'un environnement extérieur complexe.
2

Optimisation stochastique et adaptative pour surveillance coopérative par une équipe de micro-véhicules aériens

Renzaglia, Alessandro 27 April 2012 (has links) (PDF)
L'utilisation d'équipes de robots a pris de l'ampleur ces dernières années. Cela est dû aux avantages que peut offrir une équipe de robot par rapport à un robot seul pour la réalisation d'une même tâche. Cela s'explique aussi par le fait que ce type de plates-formes deviennent de plus en plus abordables et fiables. Ainsi, l'utilisation d'une équipe de véhicules aériens devient une alternative viable. Cette thèse se concentre sur le problème du déploiement d'une équipe de Micro-Véhicules Aériens (MAV) pour effectuer des missions de surveillance sur un terrain inconnu de morphologie arbitraire. Puisque la morphologie du terrain est inconnue et peut être complexe et non-convexe, les algorithmes standards ne sont pas applicables au problème particulier traité dans cette thèse. Pour y remédier, une nouvelle approche basée sur un algorithme d'optimisation cognitive et adaptatif (CAO) est proposée et évaluée. Une propriété fondamentale de cette approche est qu'elle partage les mêmes caractéristiques de convergence que les algorithmes de descente de gradient avec contraintes qui exigent une connaissance parfaite de la morphologie du terrain pour optimiser la couverture. Il est également proposé une formulation différente du problème afin d'obtenir une solution distribuée, ce qui nous permet de surmonter les inconvénients d'une approche centralisée et d'envisager également des capacités de communication limitées. De rigoureux arguments mathématiques et des simulations étendues établissent que l'approche proposée fournit une méthodologie évolutive et efficace qui intègre toutes les contraintes physiques particulières et est capable de guider les robots vers un arrangement qui optimise localement la surveillance. Finalement, la méthode proposée est mise en œuvre sur une équipe de MAV réels pour réaliser la surveillance d'un environnement extérieur complexe.
3

Optimisation stochastique et adaptative pour surveillance coopérative par une équipe de micro-véhicules aériens / Adaptive stochastic optimization for cooperative coverage with a swarm of Micro Air Vehicles

Renzaglia, Alessandro 27 April 2012 (has links)
L'utilisation d'équipes de robots a pris de l'ampleur ces dernières années. Cela est dû aux avantages que peut offrir une équipe de robot par rapport à un robot seul pour la réalisation d'une même tâche. Cela s'explique aussi par le fait que ce type de plates-formes deviennent de plus en plus abordables et fiables. Ainsi, l'utilisation d'une équipe de véhicules aériens devient une alternative viable. Cette thèse se concentre sur le problème du déploiement d'une équipe de Micro-Véhicules Aériens (MAV) pour effectuer des missions de surveillance sur un terrain inconnu de morphologie arbitraire. Puisque la morphologie du terrain est inconnue et peut être complexe et non-convexe, les algorithmes standards ne sont pas applicables au problème particulier traité dans cette thèse. Pour y remédier, une nouvelle approche basée sur un algorithme d'optimisation cognitive et adaptatif (CAO) est proposée et évaluée. Une propriété fondamentale de cette approche est qu'elle partage les mêmes caractéristiques de convergence que les algorithmes de descente de gradient avec contraintes qui exigent une connaissance parfaite de la morphologie du terrain pour optimiser la couverture. Il est également proposé une formulation différente du problème afin d'obtenir une solution distribuée, ce qui nous permet de surmonter les inconvénients d'une approche centralisée et d'envisager également des capacités de communication limitées. De rigoureux arguments mathématiques et des simulations étendues établissent que l'approche proposée fournit une méthodologie évolutive et efficace qui intègre toutes les contraintes physiques particulières et est capable de guider les robots vers un arrangement qui optimise localement la surveillance. Finalement, la méthode proposée est mise en œuvre sur une équipe de MAV réels pour réaliser la surveillance d'un environnement extérieur complexe. / The use of multi-robot teams has gained a lot of attention in recent years. This is due to the extended capabilities that the teams offer compared to the use of a single robot for the same task. Moreover, as these platforms become more and more affordable and robust, the use of teams of aerial vehicles is becoming a viable alternative. This thesis focuses on the problem of deploying a swarm of Micro Aerial Vehicles (MAV) to perform surveillance coverage missions over an unknown terrain of arbitrary morphology. Since the terrain's morphology is unknown and it can be quite complex and non-convex, standard algorithms are not applicable to the particular problem treated in this thesis. To overcome this, a new approach based on the Cognitive-based Adaptive Optimization (CAO) algorithm is proposed and evaluated. A fundamental property of this approach is that it shares the same convergence characteristics as those of constrained gradient-descent algorithms, which require perfect knowledge of the terrain's morphology to optimize coverage. In addition, it is also proposed a different formulation of the problem in order to obtain a distributed solution, which allows us to overcome the drawbacks of a centralized approach and to consider also limited communication capabilities. Rigorous mathematical arguments and extensive simulations establish that the proposed approach provides a scalable and efficient methodology that incorporates any particular physical constraints and limitations able to navigate the robots to an arrangement that (locally) optimizes the surveillance coverage. The proposed method is finally implemented in a real swarm of MAVs to carry out surveillance coverage in an outdoor complex area.
4

Méthodologie de conception de système multi-robots : de la simulation à la démonstration / Multi-robot System Design Methodology : from Simulation to Demonstration

Kancir, Pierre 11 December 2018 (has links)
Méthodologie de Conception de Système Multi-robots : de la Simulation à la Démonstration. Les systèmes multi-robots sont des systèmes complexes mais prometteurs dans de nombreux domaines, les nombreux travaux académiques dans ce domaine attestent de l'importance qu'ils auront dans le futur. Cependant, si ces promesses sont réelles, elles ne sont pas encore réalisées comme en témoigne le faible nombre de systèmes multi-robots utilisés dans l'industrie. Pourtant des solutions existent afin de permettre aux industriels et académiques de travailler ensemble à cette problématique. Nous proposons un état de l'art et les défis associés à la conception des systèmes multi-robots d'un point de vue académique et industriel. Nous présentons ensuite trois contributions pour la conception de ces systèmes : une réalisation d'un essaim hétérogène en tant que cas d'étude pratique afin de mettre en évidence les obstacles de conception. La modification d'un autopilote et d'un simulateur pour les rendre compatibles aux développements des systèmes multi-robots. La démonstration d'un outil d'évaluation sur la base des deux contributions précédentes. Enfin, nous concluons sur la portée de ces travaux et des perspectives à venir sur la base de l'open source / Multi-robot System Design Methodology : from Simulation to Demonstration Multi-robot systems are complex but promising systems in many fields, the number of academic works in this field underlines the importance they will have in the future. However, while these promises are real, they have not yet been realized, as evidenced by the small number of multi-robot systems used in the industry. However, solutions exist to enable industrialists and academics to work together on this issue. We propose a state of the art and challenges associated with the design of multi-robot systems from an academic and industrial point of view. We then present three contributions for the design of these systems: a realization of a heterogeneous swarm as a practical case study in order to highlight the design obstacles. The modification of an autopilot and a simulator to make them compatible with the development of multi-robot systems. Demonstration of an evaluation tool based on the two previous contributions. Finally, we conclude on the scope of this work and future perspectives based on open source.
5

Safe and flexible hybrid control architecture for the navigation in formation of a group of vehicles / Architecture de contrôle / commande sûre et flexible pour la navigation en formation d'un groupe de véhicules

Vilca Ventura, José Miguel 26 October 2015 (has links)
Plusieurs laboratoires de robotique à travers le monde travaillent sur le développement de stratégies innovantes pour la navigation autonome de véhicules élémentaires ou en convoi. Dans ce contexte, nos travaux de thèse s’inscrivent principalement dans le cadre de la navigation en formation d’un groupe de véhicules dans des environnements structurés. La complexité de ces systèmes multi-robots ne permet pas l’utilisation directe de techniques classiques de perception et/ou de contrôle/commande. Nos travaux ont consisté à décomposer le contrôle global, dédié à la réalisation de la tâche complexe, en un ensemble de comportements/contrôleurs élémentaires précis et fiables (e.g., évitement d’obstacles, suivi de trajectoire, attraction vers une cible, navigation en formation, etc.). Ces comportements lient les différentes informations fournies par les capteurs aux actions des véhicules. Pour garantir les critères de performances imposés à notre architecture de contrôle/commande (e.g., stabilité, robustesse et/ou borner les erreurs maximales), les potentialités des systèmes hybrides ont été considérées. Cette architecture de contrôle a été validée, dans un premier temps, sur des véhicules pris individuellement, en utilisant notamment une stratégie de navigation sûre et flexible utilisant des points de passage. Cette navigation permet au véhicule d’effectuer différentes manœuvres entre ces points de passage (pour éviter par exemple des obstacles dans l’environnement) et ce sans avoir à planifier/re-planifier des trajectoires globales dans l’environnement. Une loi de commande spécifique, permettant une attraction stable (au sens de Lyapunov) et précise vers des cibles statiques ou dynamiques a été par ailleurs développée. Cette loi de commande garantit la convergence du véhicule vers chaque point de passage tout en garantissant des trajectoires sûres. Par ailleurs, un algorithme nommé OMWS (pour Optimal Multi-criteria Waypoint Selection) a été proposé pour sélectionner les configurations optimales des points de passage dans l’environnement. Cet algorithme permet de garantir des mouvements sûrs et fiables du véhicules en tenant compte des contraintes et incertitudes liées à la navigation du véhicule. Par la suite, l’architecture de contrôle/commande proposée a été étendue aux systèmes multi-robots en utilisant la combinaison d’une approche leader-suiveur et comportementale. Un important aspect de la navigation multi-robots est la reconfiguration dynamique de la formation en fonction du contexte de la navigation (e.g., passer d’une configuration triangle vers ligne si la largeur de la voie de navigation ne suffisait pas). Ainsi, des stratégies de reconfiguration dynamique ont été proposées, permettant de garantir la sureté de la formation même au moment des transitions entre configurations. Il est à noter par ailleurs que des métriques spécifiques ont été proposées pour quantifier la fiabilité et la robustesse des stratégies multi-robots proposées. Plusieurs simulations et expérimentations avec des véhicules urbains (VIPALABs) nous ont permis de confirmer la viabilité et efficacité des architectures de contrôle/commande proposées pour la navigation en formation d’un groupe de VIPALABs. / Beyond the interest of robotics laboratories for the development of dedicated strategies for single vehicle navigation, several laboratories around the world are more and more involved in the general challenging field of cooperative multi-robot navigation. In this context, this work deals with the navigation in formation of a group of Unmanned Ground Vehicles (UGVs) dedicated to structured environments. The complexity of this Multi-Robot System (MRS) does not permit the direct use of neither classical perception nor control techniques. To overcome this problem, this work proposes to break up the overall control dedicated to the achievement of the complex task into a group of accurate and reliable elementary behaviors/controllers (e.g., obstacles avoidance, trajectory tracking, target reaching, navigation in formation, formation reconfiguration, etc.). These behaviors are linked to different information given by the sensors to the actions of vehicles. To guarantee the performances criteria (e.g., stability, convergence, state errors) aimed by the control architecture, the potentialities of hybrid controllers (which controlling continuous systems in the presence of discrete events) are considered. This control architecture is validated for a single vehicle to perform safe and flexible autonomous navigation using an appropriate strategy of navigation through suitable set of waypoints. This flexible navigation allows different vehicle maneuvers between waypoints (e.g., target reaching or obstacle avoidance) without using any trajectory planning nor replanning. The designed control law based on Lyapunov synthesis guarantees the convergence to assigned waypoint while performing safe trajectories. Furthermore, an algorithm to select suitable waypoints’ positions, named Optimal Multi-criteria Waypoint Selection (OMWS), in structured environments while taking into account the safe and reliable vehicle movements, and vehicle constraints and uncertainties is proposed. Subsequently, the control architecture is extended to Multi-Robot Formation (MRF) using a combination of Leader-Follower and behavior-based approaches. An important cooperative MRS issues in this thesis is the dynamic reconfiguration of the formation according to the context of navigation (e.g., to pass from a triangle configuration towards a line if the width of the navigation way is not sufficient). The proposed Strategy for Formation Reconfiguration (SFR) guarantees the stability and the safety of the MRS at the time of the transitions between configuration (e.g., line towards square, triangle towards line, etc.). Therefore, a safe, reactive and dynamic MRF is obtained. Moreover, the degrees of multi-robot safety, stability and reliability of the system are quantified via suitable metrics. Simulations and experiments using urban vehicles (VIPALABs) of the Institut Pascal laboratory allow to perform exhaustive experiments of the proposed control architecture for the navigation in formation of a group of UGVs.

Page generated in 0.1074 seconds