Spelling suggestions: "subject:"cobots -- cinématique"" "subject:"cobots -- kinématique""
11 |
Développement d'un algorithme de cinématique d'interaction appliqué sur un bras robotique dans un contexte de coopération humain-robotLeBel, Philippe 06 March 2024 (has links)
Ce mémoire présente le développement d’un algorithme de cinématique d’interaction dans un contexte de coopération humain-robot. Cet algorithme vise à faciliter le contrôle de bras robotiques en évitant les collisions, singularités et limites articulaires du robot lorsqu’il est contrôlé par un humain. La démarche adoptée pour l’ateinte de l’objectif est le prototypage d’un algorithme sur une structure robotique simple, la validation expérimentale de ce prototype, la généralisation de l’algorithme sur une base robotique à 6 degrés de liberté et la validation de l’algorithme final en le comparant expérimentalement avec un algorithme similaire. Premièrement, le prototype d’algorithme est développé sur un bras robotisé Jaco, de l’entreprise Kinova, duquel le poignet a été retiré. Cette architecture permet le déplacement de l’effecteur selon 3 degrés de liberté en translation. L’algorithme développé sur cette base robotique permet : — l’évitement des collisions avec les objets présents dans l’environnement de travail, — l’évitement des limitations articulaires — et l’évitement des singularités propres à l’architecture du robot. Les performances de l’algorithme sont ensuite validées lors d’expérimentations dans lesquelles il a été démontré que l’algorithme a permis une réduction d’approximativement 50% du temps de complétion d’une tâche donnée tout en réduisant l’attention que l’utilisateur doit porter sur le contrôle du robot comparativement à l’attention portée à l’accomplissement de la tâche demandée. Ensuite, des améliorations sont apportées à l’infrastructure : — une méthode de numérisation de l’environnement de travail est ajoutée, — un meilleur algorithme de détection de collisions et de mesure des distances minimales entre les membrures du robot et les obstacles présents dans l’environnement de travail est implémenté. De plus, une méthode de balayage de l’environnement de travail à l’aide d’une caméra Kinect ainsi qu’un algorithme de segmentation de nuage de points en polygones convexes sont présentés. Des tests effectués avec l’algorithme prototype ont été effectués et ont révélé que bien que des imperfections au niveau de la méthode de balayage existent, ces modifications de l’infrastructure peuvent améliorer la facilité avec laquelle l’algorithme de cinématique d’interaction peut être implémenté. Finalement, l’algorithme implémenté sur une architecture robotique à six degrés de liberté est présenté. Les modifications et les adaptations requises pour effectuer la transition avec la version initiale de l’algorithme sont précisées. Les expérimentations ont validé la performance de l’algorithme vis à vis un autre algorithme de contrôle pour l’évitement de collisions. Elles ont démontré une amélioration de 25% en terme de temps requis pour effectuer une tâche donnée comparé aux temps obtenus avec un algorithme de ressorts-amortisseurs virtuels.
|
12 |
Découplage de la proprioception et de l'actionnement des manipulateurs robotiques sériels comme court-circuit au critère de raideur élevéeGarant, Xavier 17 June 2024 (has links)
Cette thèse présente une méthode de proprioception alternative pour les manipulateurs robotiques sériels. Cette méthode ne dépend pas de la position des actionneurs et ne nécessite donc pas d'hypothèse de corps rigides. Cela permet, d'une part, d'envisager un paradigme différent pour la conception de robots légers et flexibles, mieux adaptés aux applications d'interaction physique-humain robot. D'autre part, cela permet de transformer la déformation de la structure du robot, habituellement perçue comme un désavantage, en un outil de détection des intentions de l'usager pendant une tâche d'interaction. Le premier chapitre présente la conception du système de rétroaction non colocalisée pour manipulateurs sériels flexibles. Le dispositif est une chaîne sérielle et passive d'encodeurs et de membrures légères, disposée en parallèle avec le manipulateur. Ce bras de mesure découple la proprioception du manipulateur de ses actionneurs en fournissant de l'information sur la pose réelle de son organe terminal, qui tient compte de la flexibilité des membrures et des articulations. Un schéma de commande dans l'espace des tâches, mettant à profit cette rétroaction additionnelle, est conçu et testé en simulation. Finalement, les résultats de simulation sont validés à l'aide d'un manipulateur expérimental léger à trois degrés de liberté, équipé d'un bras de mesure à cinq degrés de liberté. Le second chapitre présente une méthode permettant l'interaction physique humain-robot de façon intuitive avec les manipulateurs flexibles grâce au système de mesure précédemment mentionné. En mesurant la déviation de l'organe terminal par rapport à la base, toute la structure du manipulateur devient une interface potentielle d'interaction, peu importe si la flexion provient des membrures ou des articulations. Le schéma de commande proposé est basé sur un simple asservissement des vitesses articulaires et ne requiert que la connaissance de la matrice jacobienne rigide du manipulateur. L'approche est validée en simulation sur un modèle simplifié, ainsi qu'expérimentalement sur un prototype physique de robot sériel à trois degrés de liberté avec articulations et membrures flexibles. Le troisième et dernier chapitre présente une généralisation des concepts reliés aux actionneurs a élasticité en série (*series elastic actuators*, SEA) pour la commande en force de manipulateurs à articulations et membrures flexibles à plusieurs degrés de liberté. En utilisant la mesure de la pose de l'organe terminal, toute la structure d'un manipulateur peut être considérée comme un SEA. Une approche par éléments de raideur localisés (*lumped stiffness*) est proposée pour modéliser la raideur du manipulateur. Ce faisant, les schémas de commande développés pour l'interaction physique humain-robot avec les SEA peuvent être transposés à la commande en impédance de manipulateurs flexibles. Un résultat connu sur la raideur maximale passivement réalisable avec les SEA à un degré de liberté est généralisé pour les structures flexibles à plusieurs degrés de liberté. Finalement, les schémas de commande proposés sont validés expérimentalement. / This thesis presents an alternative proprioception method for flexible serial robotic manipulators. This method is independent from the actuators and requires no rigid body assumption. This enables, on one hand, a different design paradigm for lightweight and flexible robots, that are better suited for physical human-robot interaction (pHRI) applications. On the other hand, this allows structural deflection, usually perceived as a disadvantage, to be transformed into a tool enabling user intent detection during an interaction task. The first chapter presents the design of a non-collocated feedback system for flexible serial manipulators. The device is a passive serial chain of encoders and lightweight links, mounted in parallel with the manipulator. This measuring arm effectively decouples the manipulator's proprioception from its actuators by providing information on the actual end-effector pose, accounting for both joint and link flexibility. With this additional feedback, a task-space position controller is devised and tested in simulation. Finally, the simulation results are validated with an experimental 3-DoF lightweight manipulator prototype equipped with a five-joint measuring arm. The second chapter presents a method enabling intuitive pHRI with flexible robots using an end-point sensing device. The device is a passive serial chain of encoders and lightweight links, mounted in parallel with the manipulator. By measuring the deflection of the end-effector relative to the base, the whole body of the manipulator becomes a potential interaction interface, whether the compliance stems from the links or the joints. The proposed control scheme is a simple joint velocity control that only requires knowledge of the rigid-body Jacobian matrix of the manipulator. The approach is validated both in simulation on a simplified model and experimentally on a physical 3-DoF flexible-link flexible-joint serial robot. The third and final chapter proposes a task-space generalisation of series elastic actuation concepts for flexible-link flexible-joint robots with any number of degrees of freedom. Using end-point sensing, the whole body of the flexible manipulator can effectively be considered a task-space series elastic actuator (SEA). A lumped stiffness approach based on the virtual joint method is used to establish an elastostatic model of the flexible manipulator. A simple methodology is proposed in order to identify the elastostatic model parameters. This allows force control of the robot, with notable applications in physical human-robot interaction through admittance and impedance control schemes. A known result on the maximum passively renderable stiffness for single degree-of-freedom (dof) SEAs is generalised to n-dof flexible structures, providing bounds on the renderable stiffness matrix that apply to any causal controller. Finally, the task-space control schemes derived from the SEA literature are implemented and validated on a 3-dof flexible-link flexible-joint manipulator prototype.
|
13 |
Modélisation, conception mécanique, étude cinématique et dynamique d'un robot hybride redondant à (6+3) degrés de libertéHarton, David 24 March 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2019-2020 / Les robots collaboratifs prennent de plus en plus de place sur les lignes de production au sein des entreprises manufacturières. Leur facilité d'installation et d'utilisation ainsi que leur caractère sécuritaire constituent des avantages liés à leur utilisation. Les robots collaboratifs sériels sont les plus populaires dans l'industrie. Le principal avantage de ceux-ci est leur grand espace de travail. Cependant, l'inertie des architectures sérielles est généralement élevée, limitant ainsi les performances dynamiques du robot. Les robots parallèles sont plus avantageux sur ce point. Un principal avantage des robots parallèles collaboratifs est que les actionneurs sont situés près de la base, diminuant ainsi l'inertie, comparativement aux robot sériels. Cependant il existe peu de robots parallèles collaboratifs sur le marché. Dans ce mémoire est présenté un concept de robot hybride cinématiquement redondant utilisé pour des applications de coopération humain-robot à faible impédance. Ce robot d'architecture 3-[R(RR-RRR)SR] possède (6+3) degrés de liberté (ddl). La redondance du robot permet d'augmenter l'espace du travail notamment en rotation (comparativement à celui d'un robot non redondant d'architecture semblable) en diminuant le nombre de configurations singulières de type II dans l'espace de travail. Le robot est composé de trois jambes d'architecture hybride ayant chacune trois ddl et trois actionneurs ainsi qu'une plateforme composée d'un mécanisme parallèle plan à trois ddl. Les trois degrés de liberté redondants sont utilisés à la plateforme, afin d'y opérer une pince à partir des actionneurs aux jambes. Ce robot possède de grandes capacités en rotation, soient +-90° en inclinaison et en torsion. Ce robot est conçu de manière à ce qu'il soit rétrocommandable et qu'il ait une faible impédance et une faible inertie. Il ne possède aucun réducteur aux actionneurs. Le concept du robot présenté dans ce document est modulaire. En effet, l'architecture des jambes et de la plateforme peuvent différer légèrement afin d'adapter le robot à une application spécifique. Dans le cas présent, des jambes hybrides et une plateforme plane sont choisies pour des fins de simplicité et de maximisation de l'espace de travail. Dans ce document, les modèles cinématiques et dynamiques du robot, de la plateforme et des jambes sont présentés. Les étapes de conception mécanique ainsi qu'une étude de la sensibilité cinématique du robot sont également détaillés. / Collaborative robots become present on production lines in factories. Their easiness of installation and use and their safety features make them more attractive. Serial collaborative robots are the most popular in the industry. Their main advantage is their large workspace. However, the inertia of the members of serial robots is the main limitation of the dynamic performances. Parallel robots are more attractive on this aspect. The main advantage of parallel robots is that their actuators are located near the base, decreasing the inertia compared to serial robots. However, there are few parallel collaborative robots on the market. In this Master's thesis, a novel concept of a redundant hybrid robot used for low impedance physical human-robot interaction (pHRI) applications is presented. This robot has a 3-[R(RRRRR) SR] architecture and (6+3) degrees of freedom (dof). Redundancy allows to get a larger workspace especially in rotation (compared to a non-redundant robot with the same architecture) by avoiding some type II singularity configurations in the workspace. The robot has three 3-dof hybrid legs having three actuators, and the platform, which is a 3-dof parallel planar mechanism. The three redundant degrees of freedom are used at the platform to actuate a gripper from the leg actuators. The robot has a large rotational workspace, namely > +-90° in tilt and torsion. This robot is designed to be backdrivable, with a low impedance and a low inertia. The actuators have no gearbox. The robot presented in this document is modular. Indeed, the leg architecture and the platform may differ depending on the application. In the present case, hybrid legs and planar platform are chosen for simplicity and workspace maximisation purposes. In this document, kinematic and dynamic models of the robot are presented. The main mechanical design steps and a study of the kinetic sensitivity are also detailed.
|
Page generated in 0.0673 seconds