Spelling suggestions: "subject:"robustez dde semelhantes"" "subject:"robustez dee semelhantes""
1 |
Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness / Reparação interativa de segmentações 3D com transformada imagem-floresta, supervoxels, robustez de sementesTavares, Anderson Carlos Moreira 02 June 2017 (has links)
Image segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions. / Segmentação de imagem consiste no seu particionamento em regiões, tal como para isolar os pixels pertencentes a objetos de interesse em uma imagem, sendo uma etapa importante para visão computacional, processamento de imagens médicas e outras aplicações. Muitas vezes a segmentação automática gera resultados com imperfeições. O usuário pode corrigi-las editando-a manualmente, interativamente ou simplesmente descartar o resultado e gerar outro automaticamente. Métodos interativos combinam os benefícios dos métodos manuais e automáticos, reduzindo o esforço do usuário e utilizando seu conhecimento de alto nível. Nos métodos baseados em sementes, para continuar ou reparar uma segmentação prévia (presegmentação), evitando o usuário começar do zero, é necessário resolver o Problema da Segmentação Interativa Reversa (RISP), ou seja, estimar automaticamente as sementes que o gerariam. Para isso, este trabalho particiona o objeto da segmentação em núcleos. Em um núcleo, duas sementes separadamente produzem o mesmo resultado, tornando uma delas redundante. Com isso, apenas uma semente por núcleo é necessária. Núcleos contidos nos resultados de outros núcleos são redundantes e também podem ser descartados, reduzindo ainda mais o conjunto de sementes, um processo denominado Análise de Redundância. Um conjunto mínimo de sementes para a presegmentação é gerado e o problema da reparação interativa pode então ser resolvido através da adição de novas sementes ou remoção. Dentro do arcabouço da Transformada Imagem-Floresta (IFT), novos métodos como Oriented Image-Foresting Transform (OIFT) e Oriented Relative Fuzzy Connectedness (ORFC) foram desenvolvidos. Todavia, não há algoritmos para calcular o núcleo destes métodos. Este trabalho desenvolve tais algoritmos, com prova de corretude. Os núcleos também nos fornecem uma indicação do grau de robustez dos métodos sobre o posicionamento das sementes. Por isso, um método híbrido do GraphCut com o núcleo do ORFC, bem como um Coeficiente de Robustez (RC), foram desenvolvidos. Neste trabalho também foi desenvolvida outra solução para reparar segmentações, a qual é baseada em IFT-SLIC, originalmente utilizada para gerar supervoxels. Resultados experimentais analisam, comparam e demonstram o potencial destas soluções.
|
2 |
Interactive 3D segmentation repair with image-foresting transform, supervoxels and seed robustness / Reparação interativa de segmentações 3D com transformada imagem-floresta, supervoxels, robustez de sementesAnderson Carlos Moreira Tavares 02 June 2017 (has links)
Image segmentation consists on its partition into relevant regions, such as to isolate the pixels belonging to desired objects in the image domain, which is an important step for computer vision, medical image processing, and other applications. Many times automatic segmentation generates results with imperfections. The user can correct them by editing manually, interactively or can simply discard the segmentation and try to automatically generate another result by a different method. Interactive methods combine benefits from manual and automatic ones, reducing user effort and using its high-level knowledge. In seed-based methods, to continue or repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is necessary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically estimate the seeds that would generate it. In order to achieve this goal, we first divide the segmented object into its composing cores. Inside a core, two seeds separately always produce the same result, making one redundant. With this, only one seed per core is required. Cores leading to segmentations which are contained in the result of other cores are redundant and can also be discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set of seeds for presegmentation is generated and the problem of interactive repair can be solved by adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform (IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for computing the core of these methods. This work develops such algorithms, with proof of correctness. The cores also give an indication of the degree of robustness of the methods on the positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present another developed solution to repair segmentations, which is based on IFT-SLIC, originally used to generate supervoxels. Experimental results analyze, compare and demonstrate the potential of these solutions. / Segmentação de imagem consiste no seu particionamento em regiões, tal como para isolar os pixels pertencentes a objetos de interesse em uma imagem, sendo uma etapa importante para visão computacional, processamento de imagens médicas e outras aplicações. Muitas vezes a segmentação automática gera resultados com imperfeições. O usuário pode corrigi-las editando-a manualmente, interativamente ou simplesmente descartar o resultado e gerar outro automaticamente. Métodos interativos combinam os benefícios dos métodos manuais e automáticos, reduzindo o esforço do usuário e utilizando seu conhecimento de alto nível. Nos métodos baseados em sementes, para continuar ou reparar uma segmentação prévia (presegmentação), evitando o usuário começar do zero, é necessário resolver o Problema da Segmentação Interativa Reversa (RISP), ou seja, estimar automaticamente as sementes que o gerariam. Para isso, este trabalho particiona o objeto da segmentação em núcleos. Em um núcleo, duas sementes separadamente produzem o mesmo resultado, tornando uma delas redundante. Com isso, apenas uma semente por núcleo é necessária. Núcleos contidos nos resultados de outros núcleos são redundantes e também podem ser descartados, reduzindo ainda mais o conjunto de sementes, um processo denominado Análise de Redundância. Um conjunto mínimo de sementes para a presegmentação é gerado e o problema da reparação interativa pode então ser resolvido através da adição de novas sementes ou remoção. Dentro do arcabouço da Transformada Imagem-Floresta (IFT), novos métodos como Oriented Image-Foresting Transform (OIFT) e Oriented Relative Fuzzy Connectedness (ORFC) foram desenvolvidos. Todavia, não há algoritmos para calcular o núcleo destes métodos. Este trabalho desenvolve tais algoritmos, com prova de corretude. Os núcleos também nos fornecem uma indicação do grau de robustez dos métodos sobre o posicionamento das sementes. Por isso, um método híbrido do GraphCut com o núcleo do ORFC, bem como um Coeficiente de Robustez (RC), foram desenvolvidos. Neste trabalho também foi desenvolvida outra solução para reparar segmentações, a qual é baseada em IFT-SLIC, originalmente utilizada para gerar supervoxels. Resultados experimentais analisam, comparam e demonstram o potencial destas soluções.
|
Page generated in 0.0774 seconds