• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolução magmática do Sill de Limeira: petrografia e geoquímica / Magmatica evolution of the Limeira Sill: petrography and chemistry

Camila Antenor Faria 19 November 2008 (has links)
O Sill de Limeira possui variação composicional ampla e aparentemente contínua, no intervalo entre basalto nas bordas de resfriamento e quartzo monzodiorito grosso na parte mais central exposta até agora nas pedreiras onde é explorado. Abaixo da borda basáltica do topo encontra-se uma camada bastante rica em amígdalas, preenchidas por minerais de origem hidrotermal, seguida pela ocorrência de ocelos de composição quartzo monzonítica. Por toda extensão do sill ocorrem veios riolíticos (em menor proporção, quartzo monzoníticos), de direção preferencial perpendicular às bordas de resfriamento. As rochas são compostas essencialmente por plagioclásio, clinopiroxênio (augita ± pigeonita) e/ou anfibólio, Ti-magnetita, illmenita, além de quartzo e feldspato alcalino (nos termos mais diferenciados). Os minerais acessórios são apatita, filossilicatos, zircão, badeleíta, esfalerita, pirita e allanita; minerais de alteração hidrotermal são zeólitas, calcita, apofilita. Augita tem composição variada entre Fs~20, nas rochas mais primitivas e Fs40 nas mais diferenciadas (quartzo monzodiorito até riolito). O plagioclásio varia desde labradorita até oligoclásio, com predomínio de andesina An50-30 nas rochas mais abundantes. A química de rocha total revela um trend de diferenciação contínuo de composições entre o basalto de borda (~48% SiO2) e o quartzo monzodiorito (~61% SiO2); um hiato entre quartzo monzodiorito e riolito é identificado no intervalo 61-69% SiO2, no entanto quartzo monzonitos com 63-64% SiO2 aparecem como corpos de pequeno volume (veios e ocelos). O teor de Ca, Mg, Ti e Fe mostra tendência contínua de queda com a diferenciação, enquanto K tem aumento contínuo e Na e Al mantêm-se quase constantes, alcançando seu valor máximo no quartzo monzonito. Ba, Rb e Zr mostram comportamento incompatível, enquanto Co, Cr e Sr são tipicamente compatíveis. Os padrões de ETR são fracionados (LaN/YbN~12), e mostram enriquecimento até o quartzo monzodiorito; em rochas mais diferenciadas passa a haver algum empobrecimento, principalmente dos ETR médios, refletindo a extração de clinopiroxênio.. A diferenciação do Sill de Limeira parece refletir processos de cristalização fracionada, que fornece resultados consistentes em balanços de massa, tanto nos estágios iniciais, como na geração dos líquidos residuais diferenciados (quartzo monzonito e riolito), onde deve ter ocorrido por filter pressing. Em um modelo em que a cristalização ocorre a partir das bordas do corpo, com líquidos residuais sendo gerados nas frentes de solidificação, os ocelos foram possivelmente originados pela migração desses líquidos. Em um estágio posterior de evolução da câmara, os líquidos residuais expulsos dessas frentes teriam percolado fraturas em porções já solidificadas, formando os veios riolíticos. / The Limeira Sill exhibits a wide and continuous compositional variation, between basalt at the chilled margins and coarse-grained quartz monzodiorite in the innermost part currently exposed in the quarried where it is exploited. Below the top basalt border there is a layer rich in amygdales filled by hydrothermal minerals, followed downwards by the appearance of quartz monzonitic occelli. Throughout the sill occur rhyolitic (less often quartz monzonitic) veins oriented preferentially normal to the chilled margins. The rocks are composed mostly of plagioclase, clinopyroxene (augite ± pigeonite) and/or amphibole, Ti-magnetite, ilmenite, plus quartz and alkali feldspar (in the more differentiated rocks). Accessory minerals include apatite, filossilicates, zircon, baddeleyite, sphalerite, pyrite and allanite; hydrothermal minerals are zeolites, calcite and apophylite. Augite compositions vary from Fs~20 in the more primitive rocks to Fs40 in the more differentiated (quartz monzodiorite to rhyolite). Plagioclase varies from labradorite to oligoclase, with predominance of andesine An50-30 in the more abundant rocks. The whole rock chemistry reveals a continuous differentiation trend with compositions between the border basalt (~48 wt% SiO2) and the quartz monzodiorite (~61 wt% SiO2); a gap between quartz monzodiorite and rhyolite is identified in the 61-69 wt% SiO2 interval, but quartz monzonites with 63-64 wt% SiO2 appear as small-volume veins and occelli. The Ca, Mg, Ti and Fe contents show a trend of continuous decrease with differentiation, while K shows a continuous increase, and Na and Al are nearly constant, reaching maximum value in the quartz monzonites. Ba, Rb and Zr show incompatible behavior, while Co, Cr and Sr are typically compatible. The REE patterns are fractionated (LaN/YbN~12), and show enrichment up to the quartz monzodiorite; in more differentiated rocks they begin to decrease, especially the medium REE, reflecting extraction of clinopyroxene. The differentiation of the Limeira Sill appears to be a reflection of crystal fractionation, as suggested by consistent results in mass balance calculations, both for the initial stage (basalt to quartz monzodiorite) and for the generation of residual liquids (quartz monzonite and rhyolite), the latter probably involving some sort of filter pressing. In a model of magma chamber where crystallization occurs at the margins and residual liquids are generated in the solidification fronts, the occelli appear to be products of upward migration of these liquids. Later in the evolution of the chamber, the residual liquids extracted from these fronts would have percolated fractures in portions already solidified, forming the rhyolitic veins.
2

Evolução magmática do Sill de Limeira: petrografia e geoquímica / Magmatica evolution of the Limeira Sill: petrography and chemistry

Faria, Camila Antenor 19 November 2008 (has links)
O Sill de Limeira possui variação composicional ampla e aparentemente contínua, no intervalo entre basalto nas bordas de resfriamento e quartzo monzodiorito grosso na parte mais central exposta até agora nas pedreiras onde é explorado. Abaixo da borda basáltica do topo encontra-se uma camada bastante rica em amígdalas, preenchidas por minerais de origem hidrotermal, seguida pela ocorrência de ocelos de composição quartzo monzonítica. Por toda extensão do sill ocorrem veios riolíticos (em menor proporção, quartzo monzoníticos), de direção preferencial perpendicular às bordas de resfriamento. As rochas são compostas essencialmente por plagioclásio, clinopiroxênio (augita ± pigeonita) e/ou anfibólio, Ti-magnetita, illmenita, além de quartzo e feldspato alcalino (nos termos mais diferenciados). Os minerais acessórios são apatita, filossilicatos, zircão, badeleíta, esfalerita, pirita e allanita; minerais de alteração hidrotermal são zeólitas, calcita, apofilita. Augita tem composição variada entre Fs~20, nas rochas mais primitivas e Fs40 nas mais diferenciadas (quartzo monzodiorito até riolito). O plagioclásio varia desde labradorita até oligoclásio, com predomínio de andesina An50-30 nas rochas mais abundantes. A química de rocha total revela um trend de diferenciação contínuo de composições entre o basalto de borda (~48% SiO2) e o quartzo monzodiorito (~61% SiO2); um hiato entre quartzo monzodiorito e riolito é identificado no intervalo 61-69% SiO2, no entanto quartzo monzonitos com 63-64% SiO2 aparecem como corpos de pequeno volume (veios e ocelos). O teor de Ca, Mg, Ti e Fe mostra tendência contínua de queda com a diferenciação, enquanto K tem aumento contínuo e Na e Al mantêm-se quase constantes, alcançando seu valor máximo no quartzo monzonito. Ba, Rb e Zr mostram comportamento incompatível, enquanto Co, Cr e Sr são tipicamente compatíveis. Os padrões de ETR são fracionados (LaN/YbN~12), e mostram enriquecimento até o quartzo monzodiorito; em rochas mais diferenciadas passa a haver algum empobrecimento, principalmente dos ETR médios, refletindo a extração de clinopiroxênio.. A diferenciação do Sill de Limeira parece refletir processos de cristalização fracionada, que fornece resultados consistentes em balanços de massa, tanto nos estágios iniciais, como na geração dos líquidos residuais diferenciados (quartzo monzonito e riolito), onde deve ter ocorrido por filter pressing. Em um modelo em que a cristalização ocorre a partir das bordas do corpo, com líquidos residuais sendo gerados nas frentes de solidificação, os ocelos foram possivelmente originados pela migração desses líquidos. Em um estágio posterior de evolução da câmara, os líquidos residuais expulsos dessas frentes teriam percolado fraturas em porções já solidificadas, formando os veios riolíticos. / The Limeira Sill exhibits a wide and continuous compositional variation, between basalt at the chilled margins and coarse-grained quartz monzodiorite in the innermost part currently exposed in the quarried where it is exploited. Below the top basalt border there is a layer rich in amygdales filled by hydrothermal minerals, followed downwards by the appearance of quartz monzonitic occelli. Throughout the sill occur rhyolitic (less often quartz monzonitic) veins oriented preferentially normal to the chilled margins. The rocks are composed mostly of plagioclase, clinopyroxene (augite ± pigeonite) and/or amphibole, Ti-magnetite, ilmenite, plus quartz and alkali feldspar (in the more differentiated rocks). Accessory minerals include apatite, filossilicates, zircon, baddeleyite, sphalerite, pyrite and allanite; hydrothermal minerals are zeolites, calcite and apophylite. Augite compositions vary from Fs~20 in the more primitive rocks to Fs40 in the more differentiated (quartz monzodiorite to rhyolite). Plagioclase varies from labradorite to oligoclase, with predominance of andesine An50-30 in the more abundant rocks. The whole rock chemistry reveals a continuous differentiation trend with compositions between the border basalt (~48 wt% SiO2) and the quartz monzodiorite (~61 wt% SiO2); a gap between quartz monzodiorite and rhyolite is identified in the 61-69 wt% SiO2 interval, but quartz monzonites with 63-64 wt% SiO2 appear as small-volume veins and occelli. The Ca, Mg, Ti and Fe contents show a trend of continuous decrease with differentiation, while K shows a continuous increase, and Na and Al are nearly constant, reaching maximum value in the quartz monzonites. Ba, Rb and Zr show incompatible behavior, while Co, Cr and Sr are typically compatible. The REE patterns are fractionated (LaN/YbN~12), and show enrichment up to the quartz monzodiorite; in more differentiated rocks they begin to decrease, especially the medium REE, reflecting extraction of clinopyroxene. The differentiation of the Limeira Sill appears to be a reflection of crystal fractionation, as suggested by consistent results in mass balance calculations, both for the initial stage (basalt to quartz monzodiorite) and for the generation of residual liquids (quartz monzonite and rhyolite), the latter probably involving some sort of filter pressing. In a model of magma chamber where crystallization occurs at the margins and residual liquids are generated in the solidification fronts, the occelli appear to be products of upward migration of these liquids. Later in the evolution of the chamber, the residual liquids extracted from these fronts would have percolated fractures in portions already solidified, forming the rhyolitic veins.
3

Geological characterization of rock samples by LIBS and ME-XRT analytical techniques

Elvis Nkioh, Nsioh January 2022 (has links)
One of the major challenges in earth sciences and mineral exploration has been to determine with high accuracy and at a fast rate the elemental composition as well as the general chemistry of a rock sample. Many analytical techniques e.g., scanning electron microscopy (SEM) have been employed in the past with a certain degree of success, but their analyses usually require a lengthy sample preparation and time-consuming measurements which produce results at a much slower rate than techniques whichrequire less or do not require any sample preparation at all. SEM images the surface of a sample by scanning it with a high-energy beam of electrons in a raster scan pattern, where the primary electron beam produced under very low air pressure vacuum scans across the sample by striking it, and a variation of signals produce an image of the surface, or its elemental composition together with energy dispersive X-rays. Alternatively, laser induced breakdown spectrometry (LIBS) and multi energy X-ray transmission (ME-XRT) are non-contact measurement scanning techniques, capable of producing faster results than SEM-EDS which makes them suitable for real time measurements and analyses as they do not slow down the pace of a project being carried out. LIBS is a spectroscopic technique used to characterize and detect materials where a highly energetic laser pulse is focused onto the surfaces of solids, liquids or gases resulting in atomic and molecular species to emit light at specific wavelengths which is collected with a spectrometer and analysed using a computer. Comparably, ME-XRT is a sensor-based sorting technique involving the planar projection of X-ray attenuation of a particle stream, distributed on a fast conveyor belt, where they are scanned and evaluated while passing and an image is recorded by a line scan detector.      Eleven rock samples were analysed in this study. They include four rock type samples: granite, basalt, sandstone, and gneiss, all obtained from Luleå University of Technology (LTU) sample storage and seven ore type samples which include a porphyry Cu sulphide ore, a porphyry Cu oxide ore, a porphyry Cu-Au-Ag ore, an apatite iron ore (AIO), an iron-oxide copper gold ore (IOCG), an orogenic gold ore and a volcanogenic massive sulphide ore (VMS).       The SEM results give a semi-quantitative elemental composition of the rocks, which may be usedto discriminate mineralisation. Energy dispersive X-ray spectroscopy (EDS) maps may be used to identifygeological features and secondary electron (SE) images may be used to understand the topography of the rock samples. The SEM has a low penetration depth rate but produces moderate to high accuracy resultsdepending on the settings and calibrations. It requires a lengthy sample preparation, and its analytical time is often too long for routine industrial application. LIBS results also provide rock elemental compositions similar to the SEM, which may be quantitative if the same spectrometer is used for all elements and calibrated against a standard. It also produces element maps similar to the SEM-EDS maps. LIBS analyses yield high accuracy results but at a low penetration depth. There are no standard calibrations for the LIBS measurements, which limits quantification. LIBS measurements do not require any form of sample preparation. ME-XRT analyses result in rock chemical data portraying a light material fraction (aluminium-like) and a heavy material fraction (iron-like) which may be used to distinguish different rock samples based on the closeness of their effective atomic number Zeff to that of aluminium and iron respectively. It’s analysis also produces low-resolution images of the analysed rock samples. The image resolution is too low to allow interpretation of the data in the context of the structures and textures in the rock samples. It has a higher penetration depth than LIBS and SEM-EDS producing more volumetric data but with a lower accuracy in terms of the amount of information obtained. Only two elements are used for ME-XRT calibration measurements, if many elements of varying atomic numbers could be used, it would have the ability to provide a more reliable data. Samples must have a maximum and minimum thickness; thus, sample preparation is required to regulate the rock thickness.      SEM and LIBS provide element compositions of minerals and element distribution maps required by geologist in their daily activities during exploration and mining. This information can be considered the most useful obtained from all three techniques. However, LIBS analyses are faster, and its maps are of higher quality even at the same resolution as the SEM-EDS. This makes the LIBS preferable for real time measurements and analyses. Geological activities like drill core logging, mine mapping and sampling for grade control all require fast results for project continuity and LIBS is suitable for this purpose as it can keep up with the pace of these activities. SEM analytical technique provides semi-quantitative data which is more accurate than the LIBS data and thus, preferable for usage in research institutions and universities.ME-XRT can reveal information on the internal structures or different rock sample compositions. This makes it a suitable technique in distinguishing ore from waste material especially in iron ore mining and processing where the iron needs to be separated from the siliceous waste and sorting is also required prior to beneficiation to avoid equipment destruction by abrasive quartz. LIBS and ME-XRT analytical techniques complement each other in terms of analytical capabilities as LIBS has a low penetration depthrate but high accuracy results while the ME-XRT has a high penetration depth rate but low accuracy results. They are both fast scanning techniques that can be used for real time measurements and analyses and if their analytical prowess can be improved, the combination of these two fast analytical techniques may enable us to obtain high quality data and may as well be what is needed by geologists in the future.

Page generated in 0.0789 seconds