• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 15
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 17
  • 15
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The prediction of the emission spectra of flares and solid propellant rockets

Barnard, Paul Werner 04 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: It was shown in an earlier study that it is possible to predict the spectral radiance of rocket combustion plumes directly from the propellant composition and motor parameters. Little is published in the open literature on this subject, but the current trend is to use determinative methods like computational fluid dynamics and statistical techniques to simulate wide band radiance based on blackbody temperature assumptions. A limitation of these methods is the fact that they are computationally expensive and rather complex to implement. An alternative modeling approach was used which did not rely on solving all the nonlinearities and complex relationships applicable to a fundamental model. A multilayer perceptron based Neural Network was used to develop a parametric functional mapping between the propellant chemical composition and the motor design and the resulting spectral irradiance measured in a section of the plume. This functional mapping effectively models the relationship between the rocket design and the plume spectral radiance. Two datasets were available for use in this study: Emission spectra from solid propellant rockets and flare emission spectra. In the case of the solid rocket propellants, the input to the network consisted of the chemical composition of the fuels and four motor parameters, with the output of the network consisting of 146 scaled emission spectra points in the waveband from 2-5 microns. The four motor parameters were derived from equations describing the mass flow characteristics of rocket motors. The mass flow through the rocket motor does have an effect on the shape of the plume of combustion gases, which in turn has an effect on the infrared signature of the plume. The characteristics of the mass flow through the nozzle of the rocket motor determine the thermodynamic properties of the combustion process. This then influences the kind of chemical species found in the plume and also at what temperature these species are radiating energy.The resultant function describing the plume signature is: Plume signature f {p T A fuel composition} t , , , , 1 1 = ε It was demonstrated that this approach yielded very useful results. Using only 18 basic variables, the spectra were predicted properly for variations in all these parameters. The model also predicted spectra that agree with the underlying physical situation when changing the composition as a whole. By decreasing the Potassium content for example, the model demonstrated the effect of a flame suppressant on the radiance in this wavelength band by increasing the predicted output. Lowering the temperature, which drives the process of molecular vibration and translation, resulted in the expected lower output across the spectral band. In general, it was shown that only a small section of the large space of 2 propellant classes had to be measured in order to successfully generate a model that could predict emission spectra for other designs in those classes. The same principal was then applied to predicting the infrared spectral emission of a burning flare. The brick type flare considered in this study will ignite and the solid fuel will burn on all surfaces. Since there are no physical parameters influencing the plume as in the case of the rocket nozzles it was required to search for parameters that could influence the flare plume. It was possible to calculate thermodynamic properties for the flare combustion process. These parameters were then reduced to 4 parameters, namely: the oxidant-fuel ratio, equilibrium temperature, the molar mass and the maximum combustion temperature. The input variables for the flares thus consisted of the chemical composition and 4 thermodynamic parameters described above. The network proposed previously was improved and optimised for a minimum number of variables in the system. The optimised network marginally improved on the pevious results (with the same data), but the training time involved was cut substantially. The same approach to the optimization of the network was again followed to determine the optimal network structure for predicting the flare emission spectra. The optimisation involved starting out with the simplest possible network construction and continuouslyincreasing the variables in the system until the solution predicted by the network was satisfactory. Once the structure of the network was determined it was possible to optimise the training algorithms to further improve the solution. In the case of the solid rocket propellant emission data it was felt that it would be important to be able to predict the chemical composition of the fuel and the motor parameters using the infrared emission spectra as input. This was done by simply reversing the optimised network and exchanging the inputs with the outputs. The results obtained from the reversed network accurately predicted the chemical composition and motor parameters on two different test sets. The predicted spectra of some of the solid propellant rocket test sets and flare test sets did not compare well with the expected values. This was due to the fact that these test sets were in a sparsely populated area of the variable space. These outliers are normally removed from training data, but in this case there wasn’t enough data to remove outliers. To obtain an indication of the strength of the correlation between the predicted and measured line spectra two parameters were used to test the correlation between two line spectra. The first parameter is the Pearson product moment of coefficient of correlation and gives an indication of how good the predicted line spectra followed the trend of the measured spectral lines. The second parameter measures the relative distance between a target and predicted spectral point. For both the solid propellants and the flares the correlation values was very close to 1, indicating a very good solution. Values for the two correlation parameters of a test set of the flares were 0.998 and 0.992. In order to verify the model it was necessary to prove that the solution yielded by the model is better than the average of the variable space. Three statistical tests were done consisting of the mean-squared-error test, T-test and Wilcoxon ranksum test. In all three cases the average of the variable space (static model) and the predicted values (Neural Network model) were compared to the measured values. For both the T-test and the Wilcoxon ranksum test the null hypothesis is rejected when t < -tα = 1.645 and then thealternative hypothesis is accepted, which states that the error of the NN model will be smaller than that of the static model. The mean squared error for the static model was 0.102 compared to the 0.0167 of the neural net, for a solid propellant rocket test set. A ttest was done on the same test set, yielding a value of –2.71, which is smaller than – 1.645, indicating that the NN model outperforms the static model. The Z value for this test set is Z = -11.9886, which is a much smaller than –1.645. The results from these statistical tests confirm that neural network is a valid conceptual model and the solutions yielded are unique. / AFRIKAANSE OPSOMMING: In ‘n vroeër studie is bewys hoe dit moontlik is om die spektrale irradiansie van ‘n vuurpyl se verbrandingspluim te voorspel vanaf slegs die dryfmiddelsamestelling en vuurpylmotoreienskappe. In die literatuur is daar min gepubliseer oor hierdie onderwerp. Dit wil voorkom asof meer deterministiese metodes gebruik word om die probleem op te los. Metodes soos CFD simulasies en statistiese analises word tans verkies om wyeband radiansie te voorspel gebaseer op perfekte swart ligaam teorie. ‘n Groot beperking van hierdie metodes is die feit dat die berekeninge kompleks is en baie lank neem om te voltooi. ‘n Alternatiewe benadering is gebruik, wat nie poog om al die nie-liniêre en komplekse verbande uit eerste beginsels op te los nie. ‘n Neurale netwerk is gebruik om ‘n funksionele verband te skep tussen die chemiese samestelling van die dryfmiddel, vuurpylmotor ontwerp en die spektrale irradiansie van die vuurpyl se pluim. Die funksionele verband kan nou effektief die afhanklikheid van die dryfmiddelsamestelling, vuurpylmotor ontwerp en die spektrale uitset modelleer. Twee datastelle was beskikbaar vir analise: Emissie spektra van vaste dryfmiddel vuurpyle en ook van vaste dryfmiddel fakkels. Die invoer tot die neurale netwerk van die vuurpyle het bestaan uit die chemiese samestelling van die dryfmiddel en 4 vuurpylmotor eienskappe. Die uitvoer van die netwerk het weer bestaan uit 146 spektrale irradiansie waardes in die golflengte band van 2-5μm. Die 4 vuurpylmotor eienskappe is afgelei uit massavloei teorie vir vuurpyl motors, aangesien die uitvloei van die produkgasse ‘n invloed op die pluim van die motor sal hê. Die massavloei het weer ‘n effek op die spektrale handtekening van die pluim. Die eienskappe van die massavloei deur die mondstuk van die vuurpylmotor bepaal die termodinamiese eienskappe van die verbrandingsproses. Die invloed op die verbrandingsproses bepaal weer watter tipe produkte gevorm word en by watter temperatuur hulle energie uitstraal. Die gevolg is dat ‘n funksie gedefinieer kan word wat die pluim beskryf.Pluim handtekening = f{, temperatuur, mondstuk keël grootte, vernouings verhouding van mondstuk, dryfmiddelsamestelling} Deur net 18 invoer nodes te gebruik kon die netwerk die irradiansie suksesvol voorspel met ‘n variansie in al die invoer waardes. Deur byvoorbeeld die Kalium inhoud van die dryfmiddel samestelling te verminder het die model die vermindering van ‘n vlam onderdrukker suksesvol nageboots deurdat die irradiansie ‘n hoër uitset gehad het. Die sensitiwiteit van die model is verder getoets deur die temperatuur in die verbrandingskamer te verlaag, met ‘n korrekte laer irradiansie uitset, as gevolg van die feit dat die temperatuur die molekulêre vibrasie en translasie beweging beheer. Dieselfde benadering is gebruik om die model te bou vir die voorspelling van die fakkels se infrarooi irradiansie. Anders as die vuurpylmotors vind die verbranding in die geval van die fakkels in die atmosfeer plaas. Dit was dus ook nodig om na die termodinamiese eienskappe van die fakkel verbranding te kyk. Verskeie parameters is bereken, maar 4 parameters, naamlik die brandstof-suurstof verhouding, temperatuur, molêre massa en die maksimum verbrandingstemperatuur, tesame met die dryfmiddel samestelling kon die irradiansie van die fakkels suskesvol voorspel. Die bestaande netwerk struktuur vir die vuurpylmotors is verbeter en geoptimiseer vir ‘n minimum hoeveelheid veranderlikes in die stelsel. Die geoptimiseerde netwerk het ‘n klein verbetering in die voorspellings getoon, maar die oplei het drasties afgeneem. Dieselfde benadering is gebruik om die optimale netwerk vir die fakkels te bepaal. Optimisering van die netwerk struktuur is bereik deur met die eenvoudigste struktuur te begin en die hoeveelheid veranderlikes te vermeerder totdat ‘n bevredigende oplossing gevind is. Na die struktuur van die netwerk bevestig is, kon die oordragfunksies op die nodes verder geoptimiseer word om die model verder te verbeter. Dit het verder geblyk dat dit moonlik is om die netwerk vir die vuurpylmotors om te draai sodat die irradiansie gebruik word om die dryfmiddel samestelling en motor eienskappe te voorspel. Die netwerk is eenvoudig omgedraai en die insette het die uitsette geword.Die resultate van die omgekeerde netwerk het bevestig dat dit wel moontlik is om die dryfmiddel samestelling en motor eienskappe te voorspel vanaf die irradiansie. Die voorspelde spektra van beide die vuurpylmotors en die fakkels het nie altyd goed gekorreleer met die gemete data nie. Van die spektra kom voor in ‘n lae digtheidsdeel van die veranderlike ruimte. Dit het tot gevolg gehad dat daar nie genoeg data vir opleiding van die netwerk in die omgewing van die toetsdata was nie. Hierdie data is eintlik uitlopers en moet verwyder word van die opleidingsdata, maar daar is alreeds nie genoeg data beskikbaar om die uitlopers te verwyder nie. Dit is nodig om te bepaal hoe goed die voorspelde data vergelyk met die gemete data. Twee parameters is gebruik om te bepaal hoe goed die data korreleer. Die eerste is die “Pearson product moment of coefficient of correlation”, wat ‘n goeie aanduiding gee van hoe goed die voorspelde waardes die gemete waardes se profiel volg. Die tweede parameter meet die relatiewe afstand tussen die teiken en die voorspelde waardes. Vir beide die vuurpylmotors en die fakkels het die toetsstelle ‘n korrelasiewaarde van baie na aan 1 gegee, wat ‘n goeie korrelasie is. Die waardes van die twee parameters vir een van die fakkel toetstelle was onderskeidelik 0.998 en 0.992. Die model is geverifieer deur te bepaal of die model ‘n beter oplossing bied as die gemiddeld van die veranderlike ruimte. Drie statistiese toetse is gedoen: “Mean-squarederror” toets, T-toets en ‘n “Wilcoxon ranksum” toets. In al drie gevalle word die gemiddelde van die veranderlike ruimte (statiese model) en die voorspelde waardes (Neurale netwerk model) teen die gemete waardes getoets. Vir beide die T-toets en die “Wilcoxon ranksum” toets word die nul hipotese verwerp indien t < ta = 1.645 en dan word die alternatiewe hipotese aanvaar, wat bepaal dat die fout van die neurale netwerk model kleiner is as die van die statiese model. Die “mean-squared-error” van die statiese model was 0.102, in vergelyking met 0.0167 van die neurale netwerk model vir ‘n vuurpylmotor toetsstel. ‘n T-toets is gedoen vir dieselfde toetsstel, met ‘n resultaat van-2.71, wat kleiner is as –1.645 en aandui dat die neurale netwerk model weereens beter presteer as die statiese model. Die Z waarde uit die “Wilcoxon ranksum” toets is Z=- 11.9886, wat baie kleiner is as –1.645. Die resultate van die statitiese toetse toon dat die neurale netwerk ‘n geldige model is en die oplossings van die model ook uniek is.
52

Development of a hybrid sounding rocket motor.

Bernard, Geneviève. January 2013 (has links)
This work describes the development of a hybrid rocket propulsion system for a reusable sounding rocket, as part of the first phase of the UKZN Phoenix Hybrid Sounding Rocket Programme. The programme objective is to produce a series of low-to-medium altitude sounding rockets to cater for the needs of the African scientific community and local universities, starting with the 10 km apogee Phoenix-1A vehicle. In particular, this dissertation details the development of the Hybrid Rocket Performance Code (HRPC) together with the design, manufacture and testing of Phoenix-1A’s propulsion system. The Phoenix-1A hybrid propulsion system, generally referred to as the hybrid rocket motor (HRM), utilises SASOL 0907 paraffin wax and nitrous oxide as the solid fuel and liquid oxidiser, respectively. The HRPC software tool is based upon a one-dimensional, unsteady flow mathematical model, and is capable of analysing the combustion of a number of propellant combinations to predict overall hybrid rocket motor performance. The code is based on a two-phase (liquid oxidiser and solid fuel) numerical solution and was programmed in MATLAB. HRPC links with the NASA-CEA equilibrium chemistry programme to determine the thermodynamic properties of the combustion products necessary for solving the governing ordinary differential equations, which are derived from first principle gas dynamics. The combustion modelling is coupled to a nitrous oxide tank pressurization and blowdown model obtained from literature to provide a realistic decay in motor performance with burn time. HRPC has been validated against experimental data obtained during hot-fire testing of a laboratory-scale hybrid rocket motor, in addition to predictions made by reported performance modelling data. Development of the Phoenix-1A propulsion system consisted of the manufacture of the solid fuel grain and incorporated finite element and computational fluid dynamics analyses of various components of the system. A novel casting method for the fabrication of the system’s cylindrical single-port paraffin fuel grain is described. Detailed finite element analyses were performed on the combustion chamber casing, injector bulkhead and nozzle retainer to verify structural integrity under worst case loading conditions. In addition, thermal and pressure loading distributions on the motor’s nozzle and its subsequent response were estimated by conducting fluid-structure interaction analyses. A targeted total impulse of 75 kNs for the Phoenix-1A motor was obtained through iterative implementation of the HRPC application. This yielded an optimised propulsion system configuration and motor thrust curve. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
53

A mathematical model of a class of ramjet engines

Packer, Tralford James. January 1900 (has links) (PDF)
Thesis -- University of Adelaide, 1966. / [Typescript].
54

The effect of nonlinear propagation on near-field acoustical holography /

Shepherd, Micah Raymond, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physics and Astronomy, 2007. / Includes bibliographical references (p. 99-106).
55

Phase Modification And Combustion Studies On Ammonium Nitrate And Propellant Compositions

Oommen, Charlie 07 1900 (has links) (PDF)
No description available.
56

Investigation of liquid fuel jet injection into a simulated subsonic "dump" combustor

Ogg, John Chappell January 1979 (has links)
Basic experimental studies of the injection of liquid fuel into a two dimensional flowfield designed to represent a sudden-expansion "dump" combustor were performed under cold-flow conditions. Test conditions were as follows: 0.6 entrance Mach number, 25 PSIA total pressure, and nominally 75°F stagnation temperature. Two step heights were investigated, 1.0 in. and 0.5 in., corresponding to area ratios of 1.33 and 1.17. The investigation included Pitot and static pressure distributions, spark and streak shadowgraphs, surface flow visualization, direct photographs and videotape recordings. The backlighted streak and spark shadowgraphs were used to obtain jet penetration and break-up information. Oil drop surface flow studies showed details of the flow in the recirculation region behind the step. The injectant for these cold flow studies was selected as water, which was injected transversely to the air flow 1.0 in. and 0.5 in. upstream of the step at various flow rates. It was found that both the location of the injection port relative to the step and the step height had no measurable effect on jet penetration and break-up. Injectant accumulation on the combustor wall in the base-flow region was found to be substantial under some conditions, and the amount of accumulation was shown to be a strong function of initial liquid jet penetration height. / M.S.
57

The effect of departure from ideality of a multiply ionized monatomic gas on the performance of rocket engines

Perkins, John Noble 26 April 2010 (has links)
Using the Debye-Huckle approximation, the effects of Coulomb interactions on the equilibrium, frozen, and nonequilibrium flow of an ionized gas have been investigated. The gas is assumed to be monatomic, electrically neutral, and thermal equilibrium (i.e., a one temperature fluid); but the composition of the gas is arbitrary, that is, multiple ionization of any degree is allowed. The thermodynamic variables are derived starting from the appropriate expression for the Helmholtz free energy. Using Boltzmann statistics and assuming that the velocity distribution functions are given by their Maxwellian values, the rate of ionization is derived for atom-atom, atom-ion, and atom-electron collisions. The resulting expressions are then employed in solving the quasi-one-dimensional flow in a converging-diverging nozzle for the equilibrium, frozen, and nonequilibrium cases. Numerical examples, using argon as the working substance, are discussed and the results presented graphically. The results of these calculations indicate that, for single ionization, the effect of Coulomb interactions on the performance of rocket engines is negligible; but that data obtained from hypersonic arc jet wind-tunnels can be significantly influenced by the presence of the interactions. / Ph. D.
58

3-D flow and performance of a tandem-bladed rocket pump inducer

Excoffon, Tony 04 May 2010 (has links)
This thesis presents the results of a three-dimensional flow calculation with a model of turbulent viscosity for a tandem-bladed inducer in air. The purpose is to understand the 3D flow development through the two blade rows and to compare the results of the calculation 'with experimental data. A literature review tells the story of the inducer from the flat-plate design to the tandem-bladed configuration and explains its role in cavitation management. The results of a previous 3D-calculation on the first blade row alone are summarized and the MEFP code is briefly described. The generation of a grid for the second blade row is presented in detail. Then, it is shown how this new grid is linked to the previous grid for the first blade row to get an overall calculation grid for the whole inducer. Two 2D blade-to-blade calculations are shown. They give an insight into the flow behavior through the inducer and allow a test of the grid. The results of the 3D-calculation are discussed and presented extensively with the velocity vectors, the static pressure contours and the rotary stagnation pressure contours on blade-to-blade, meridional and iso-8 vie"rs. The three passages of the second blade row appear to behave differently with respect to their position relative to the wake of the first blade row. The experimental data are used for comparison at three measurement planes in terms of pressure and velocity. They show a fairly good agreement. The three-dimensional calculation predicts also very well the work done and the efficiency of the overall inducer. / Master of Science
59

Development and modeling of a dual-frequency microwave burn rate measurement system for solid rocket propellant

Foss, David T. 21 November 2012 (has links)
A dual-frequency microwave bum rate measurement system for solid rocket motors has been developed and is described. The system operates in the X-band (8.2-12.4 Ghz) and uses two independent frequencies operating simultaneously to measure the instantaneous bum rate in a solid rocket motor. Modeling of the two frequency system was performed to determine its effectiveness in limiting errors caused by secondary reflections and errors in the estimates of certain material properties, particularly the microwave wavelength in the propellant. Computer simulations based upon the modeling were performed and are presented. Limited laboratory testing of the system was also conducted to determine its ability perform as modeled. Simulations showed that the frequency ratio and the initial motor geometry (propellant thickness and combustion chamber diameter) determined the effectiveness of the system in reducing secondary reflections. Results presented show that higher frequency ratios provided better error reduction. Overall, the simulations showed that a dual frequency system can provide up to a 75% reduction in burn rate error over that returned by a single frequency system. The hardware and software for dual frequency measurements was developed and tested, however, further instrumentation work is required to increase the rate at which data is acquired using the methods presented here. The system presents some advantages over the single frequency method but further work needs to be done to realize its full potential. / Master of Science
60

A simple moving boundary technique and its application to supersonic inlet starting /

Baig, Saood Saeed. January 2008 (has links)
In this thesis, a simple moving boundary technique has been suggested, implemented and verified. The technique may be considered as a generalization of the well-known "ghost" cell approach for boundary condition implementation. According to the proposed idea, the moving body does not appear on the computational grid and is allowed to move over the grid. The impermeable wall boundary condition is enforced by assigning proper gasdynamic values at the grid nodes located inside the moving body close to its boundaries (ghost nodes). The reflection principle taking into account the velocity of the boundaries assigns values at the ghost nodes. The new method does not impose any particular restrictions on the geometry, deformation and law of motion of the moving body. / The developed technique is rather general and can be used with virtually any finite-volume or finite-difference scheme, since the modifications of the schemes themselves are not required. In the present study the proposed technique has been incorporated into a one-dimensional non-adaptive Euler code and a two-dimensional locally adaptive unstructured Euler code. / It is shown that the new approach is conservative with the order of approximation near the moving boundaries. To reduce the conservation error, it is beneficial to use the method in conjunction with local grid adaptation. / The technique is verified for a number of one and two dimensional test cases with analytical solutions. It is applied to the problem of supersonic inlet starting via variable geometry approach. At first, a classical starting technique of changing exit area by a moving wedge is numerically simulated. Then, the feasibility of some novel ideas such as a collapsing frontal body and "tractor-rocket" are explored.

Page generated in 0.0399 seconds