Spelling suggestions: "subject:"pockets (aeronautics) -- fuel"" "subject:"pockets (aeronautics) -- quel""
11 |
The prediction of the emission spectra of flares and solid propellant rocketsBarnard, Paul Werner 04 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: It was shown in an earlier study that it is possible to predict the spectral radiance of
rocket combustion plumes directly from the propellant composition and motor
parameters. Little is published in the open literature on this subject, but the current trend
is to use determinative methods like computational fluid dynamics and statistical
techniques to simulate wide band radiance based on blackbody temperature assumptions.
A limitation of these methods is the fact that they are computationally expensive and
rather complex to implement.
An alternative modeling approach was used which did not rely on solving all the nonlinearities
and complex relationships applicable to a fundamental model. A multilayer
perceptron based Neural Network was used to develop a parametric functional mapping
between the propellant chemical composition and the motor design and the resulting
spectral irradiance measured in a section of the plume. This functional mapping
effectively models the relationship between the rocket design and the plume spectral
radiance.
Two datasets were available for use in this study: Emission spectra from solid propellant
rockets and flare emission spectra. In the case of the solid rocket propellants, the input to
the network consisted of the chemical composition of the fuels and four motor
parameters, with the output of the network consisting of 146 scaled emission spectra
points in the waveband from 2-5 microns. The four motor parameters were derived from
equations describing the mass flow characteristics of rocket motors. The mass flow
through the rocket motor does have an effect on the shape of the plume of combustion
gases, which in turn has an effect on the infrared signature of the plume. The
characteristics of the mass flow through the nozzle of the rocket motor determine the
thermodynamic properties of the combustion process. This then influences the kind of
chemical species found in the plume and also at what temperature these species are
radiating energy.The resultant function describing the plume signature is:
Plume signature f {p T A fuel composition} t , , , , 1 1 = ε
It was demonstrated that this approach yielded very useful results. Using only 18 basic
variables, the spectra were predicted properly for variations in all these parameters. The
model also predicted spectra that agree with the underlying physical situation when
changing the composition as a whole. By decreasing the Potassium content for example,
the model demonstrated the effect of a flame suppressant on the radiance in this
wavelength band by increasing the predicted output. Lowering the temperature, which
drives the process of molecular vibration and translation, resulted in the expected lower
output across the spectral band. In general, it was shown that only a small section of the
large space of 2 propellant classes had to be measured in order to successfully generate a
model that could predict emission spectra for other designs in those classes.
The same principal was then applied to predicting the infrared spectral emission of a
burning flare. The brick type flare considered in this study will ignite and the solid fuel
will burn on all surfaces. Since there are no physical parameters influencing the plume as
in the case of the rocket nozzles it was required to search for parameters that could
influence the flare plume. It was possible to calculate thermodynamic properties for the
flare combustion process. These parameters were then reduced to 4 parameters, namely:
the oxidant-fuel ratio, equilibrium temperature, the molar mass and the maximum
combustion temperature. The input variables for the flares thus consisted of the chemical
composition and 4 thermodynamic parameters described above.
The network proposed previously was improved and optimised for a minimum number of
variables in the system. The optimised network marginally improved on the pevious
results (with the same data), but the training time involved was cut substantially. The
same approach to the optimization of the network was again followed to determine the
optimal network structure for predicting the flare emission spectra. The optimisation
involved starting out with the simplest possible network construction and continuouslyincreasing the variables in the system until the solution predicted by the network was
satisfactory. Once the structure of the network was determined it was possible to
optimise the training algorithms to further improve the solution.
In the case of the solid rocket propellant emission data it was felt that it would be
important to be able to predict the chemical composition of the fuel and the motor
parameters using the infrared emission spectra as input. This was done by simply
reversing the optimised network and exchanging the inputs with the outputs. The results
obtained from the reversed network accurately predicted the chemical composition and
motor parameters on two different test sets.
The predicted spectra of some of the solid propellant rocket test sets and flare test sets did
not compare well with the expected values. This was due to the fact that these test sets
were in a sparsely populated area of the variable space. These outliers are normally
removed from training data, but in this case there wasn’t enough data to remove outliers.
To obtain an indication of the strength of the correlation between the predicted and
measured line spectra two parameters were used to test the correlation between two line
spectra. The first parameter is the Pearson product moment of coefficient of correlation
and gives an indication of how good the predicted line spectra followed the trend of the
measured spectral lines. The second parameter measures the relative distance between a
target and predicted spectral point. For both the solid propellants and the flares the
correlation values was very close to 1, indicating a very good solution. Values for the
two correlation parameters of a test set of the flares were 0.998 and 0.992.
In order to verify the model it was necessary to prove that the solution yielded by the
model is better than the average of the variable space. Three statistical tests were done
consisting of the mean-squared-error test, T-test and Wilcoxon ranksum test. In all three
cases the average of the variable space (static model) and the predicted values (Neural
Network model) were compared to the measured values. For both the T-test and the
Wilcoxon ranksum test the null hypothesis is rejected when t < -tα = 1.645 and then thealternative hypothesis is accepted, which states that the error of the NN model will be
smaller than that of the static model. The mean squared error for the static model was
0.102 compared to the 0.0167 of the neural net, for a solid propellant rocket test set. A ttest
was done on the same test set, yielding a value of –2.71, which is smaller than –
1.645, indicating that the NN model outperforms the static model. The Z value for this
test set is Z = -11.9886, which is a much smaller than –1.645.
The results from these statistical tests confirm that neural network is a valid conceptual
model and the solutions yielded are unique. / AFRIKAANSE OPSOMMING: In ‘n vroeër studie is bewys hoe dit moontlik is om die spektrale irradiansie van ‘n
vuurpyl se verbrandingspluim te voorspel vanaf slegs die dryfmiddelsamestelling en
vuurpylmotoreienskappe. In die literatuur is daar min gepubliseer oor hierdie onderwerp.
Dit wil voorkom asof meer deterministiese metodes gebruik word om die probleem op te
los. Metodes soos CFD simulasies en statistiese analises word tans verkies om wyeband
radiansie te voorspel gebaseer op perfekte swart ligaam teorie. ‘n Groot beperking van
hierdie metodes is die feit dat die berekeninge kompleks is en baie lank neem om te
voltooi.
‘n Alternatiewe benadering is gebruik, wat nie poog om al die nie-liniêre en komplekse
verbande uit eerste beginsels op te los nie. ‘n Neurale netwerk is gebruik om ‘n
funksionele verband te skep tussen die chemiese samestelling van die dryfmiddel,
vuurpylmotor ontwerp en die spektrale irradiansie van die vuurpyl se pluim. Die
funksionele verband kan nou effektief die afhanklikheid van die dryfmiddelsamestelling,
vuurpylmotor ontwerp en die spektrale uitset modelleer.
Twee datastelle was beskikbaar vir analise: Emissie spektra van vaste dryfmiddel
vuurpyle en ook van vaste dryfmiddel fakkels. Die invoer tot die neurale netwerk van die
vuurpyle het bestaan uit die chemiese samestelling van die dryfmiddel en 4 vuurpylmotor
eienskappe. Die uitvoer van die netwerk het weer bestaan uit 146 spektrale irradiansie
waardes in die golflengte band van 2-5μm. Die 4 vuurpylmotor eienskappe is afgelei uit
massavloei teorie vir vuurpyl motors, aangesien die uitvloei van die produkgasse ‘n
invloed op die pluim van die motor sal hê. Die massavloei het weer ‘n effek op die
spektrale handtekening van die pluim. Die eienskappe van die massavloei deur die
mondstuk van die vuurpylmotor bepaal die termodinamiese eienskappe van die
verbrandingsproses. Die invloed op die verbrandingsproses bepaal weer watter tipe
produkte gevorm word en by watter temperatuur hulle energie uitstraal. Die gevolg is dat
‘n funksie gedefinieer kan word wat die pluim beskryf.Pluim handtekening = f{, temperatuur, mondstuk keël grootte, vernouings verhouding
van mondstuk, dryfmiddelsamestelling}
Deur net 18 invoer nodes te gebruik kon die netwerk die irradiansie suksesvol voorspel
met ‘n variansie in al die invoer waardes. Deur byvoorbeeld die Kalium inhoud van die
dryfmiddel samestelling te verminder het die model die vermindering van ‘n vlam
onderdrukker suksesvol nageboots deurdat die irradiansie ‘n hoër uitset gehad het. Die
sensitiwiteit van die model is verder getoets deur die temperatuur in die
verbrandingskamer te verlaag, met ‘n korrekte laer irradiansie uitset, as gevolg van die
feit dat die temperatuur die molekulêre vibrasie en translasie beweging beheer.
Dieselfde benadering is gebruik om die model te bou vir die voorspelling van die fakkels
se infrarooi irradiansie. Anders as die vuurpylmotors vind die verbranding in die geval
van die fakkels in die atmosfeer plaas. Dit was dus ook nodig om na die termodinamiese
eienskappe van die fakkel verbranding te kyk. Verskeie parameters is bereken, maar 4
parameters, naamlik die brandstof-suurstof verhouding, temperatuur, molêre massa en die
maksimum verbrandingstemperatuur, tesame met die dryfmiddel samestelling kon die
irradiansie van die fakkels suskesvol voorspel.
Die bestaande netwerk struktuur vir die vuurpylmotors is verbeter en geoptimiseer vir ‘n
minimum hoeveelheid veranderlikes in die stelsel. Die geoptimiseerde netwerk het ‘n
klein verbetering in die voorspellings getoon, maar die oplei het drasties afgeneem.
Dieselfde benadering is gebruik om die optimale netwerk vir die fakkels te bepaal.
Optimisering van die netwerk struktuur is bereik deur met die eenvoudigste struktuur te
begin en die hoeveelheid veranderlikes te vermeerder totdat ‘n bevredigende oplossing
gevind is. Na die struktuur van die netwerk bevestig is, kon die oordragfunksies op die
nodes verder geoptimiseer word om die model verder te verbeter.
Dit het verder geblyk dat dit moonlik is om die netwerk vir die vuurpylmotors om te draai
sodat die irradiansie gebruik word om die dryfmiddel samestelling en motor eienskappe
te voorspel. Die netwerk is eenvoudig omgedraai en die insette het die uitsette geword.Die resultate van die omgekeerde netwerk het bevestig dat dit wel moontlik is om die
dryfmiddel samestelling en motor eienskappe te voorspel vanaf die irradiansie.
Die voorspelde spektra van beide die vuurpylmotors en die fakkels het nie altyd goed
gekorreleer met die gemete data nie. Van die spektra kom voor in ‘n lae digtheidsdeel
van die veranderlike ruimte. Dit het tot gevolg gehad dat daar nie genoeg data vir
opleiding van die netwerk in die omgewing van die toetsdata was nie. Hierdie data is
eintlik uitlopers en moet verwyder word van die opleidingsdata, maar daar is alreeds nie
genoeg data beskikbaar om die uitlopers te verwyder nie.
Dit is nodig om te bepaal hoe goed die voorspelde data vergelyk met die gemete data.
Twee parameters is gebruik om te bepaal hoe goed die data korreleer. Die eerste is die
“Pearson product moment of coefficient of correlation”, wat ‘n goeie aanduiding gee van
hoe goed die voorspelde waardes die gemete waardes se profiel volg. Die tweede
parameter meet die relatiewe afstand tussen die teiken en die voorspelde waardes. Vir
beide die vuurpylmotors en die fakkels het die toetsstelle ‘n korrelasiewaarde van baie na
aan 1 gegee, wat ‘n goeie korrelasie is. Die waardes van die twee parameters vir een van
die fakkel toetstelle was onderskeidelik 0.998 en 0.992.
Die model is geverifieer deur te bepaal of die model ‘n beter oplossing bied as die
gemiddeld van die veranderlike ruimte. Drie statistiese toetse is gedoen: “Mean-squarederror”
toets, T-toets en ‘n “Wilcoxon ranksum” toets. In al drie gevalle word die
gemiddelde van die veranderlike ruimte (statiese model) en die voorspelde waardes
(Neurale netwerk model) teen die gemete waardes getoets. Vir beide die T-toets en die
“Wilcoxon ranksum” toets word die nul hipotese verwerp indien t < ta = 1.645 en dan
word die alternatiewe hipotese aanvaar, wat bepaal dat die fout van die neurale netwerk
model kleiner is as die van die statiese model. Die “mean-squared-error” van die statiese
model was 0.102, in vergelyking met 0.0167 van die neurale netwerk model vir ‘n
vuurpylmotor toetsstel. ‘n T-toets is gedoen vir dieselfde toetsstel, met ‘n resultaat van-2.71, wat kleiner is as –1.645 en aandui dat die neurale netwerk model weereens beter
presteer as die statiese model. Die Z waarde uit die “Wilcoxon ranksum” toets is Z=-
11.9886, wat baie kleiner is as –1.645.
Die resultate van die statitiese toetse toon dat die neurale netwerk ‘n geldige model is en
die oplossings van die model ook uniek is.
|
12 |
Development of a hybrid sounding rocket motor.Bernard, Geneviève. January 2013 (has links)
This work describes the development of a hybrid rocket propulsion system for a reusable sounding rocket,
as part of the first phase of the UKZN Phoenix Hybrid Sounding Rocket Programme. The programme
objective is to produce a series of low-to-medium altitude sounding rockets to cater for the needs of the
African scientific community and local universities, starting with the 10 km apogee Phoenix-1A vehicle.
In particular, this dissertation details the development of the Hybrid Rocket Performance Code (HRPC)
together with the design, manufacture and testing of Phoenix-1A’s propulsion system.
The Phoenix-1A hybrid propulsion system, generally referred to as the hybrid rocket motor (HRM),
utilises SASOL 0907 paraffin wax and nitrous oxide as the solid fuel and liquid oxidiser, respectively.
The HRPC software tool is based upon a one-dimensional, unsteady flow mathematical model, and is
capable of analysing the combustion of a number of propellant combinations to predict overall hybrid
rocket motor performance. The code is based on a two-phase (liquid oxidiser and solid fuel) numerical
solution and was programmed in MATLAB. HRPC links with the NASA-CEA equilibrium chemistry
programme to determine the thermodynamic properties of the combustion products necessary for solving
the governing ordinary differential equations, which are derived from first principle gas dynamics. The
combustion modelling is coupled to a nitrous oxide tank pressurization and blowdown model obtained
from literature to provide a realistic decay in motor performance with burn time. HRPC has been
validated against experimental data obtained during hot-fire testing of a laboratory-scale hybrid rocket
motor, in addition to predictions made by reported performance modelling data.
Development of the Phoenix-1A propulsion system consisted of the manufacture of the solid fuel grain
and incorporated finite element and computational fluid dynamics analyses of various components of the
system. A novel casting method for the fabrication of the system’s cylindrical single-port paraffin fuel
grain is described. Detailed finite element analyses were performed on the combustion chamber casing,
injector bulkhead and nozzle retainer to verify structural integrity under worst case loading conditions. In
addition, thermal and pressure loading distributions on the motor’s nozzle and its subsequent response
were estimated by conducting fluid-structure interaction analyses.
A targeted total impulse of 75 kNs for the Phoenix-1A motor was obtained through iterative
implementation of the HRPC application. This yielded an optimised propulsion system configuration and motor thrust curve. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
|
13 |
Phase Modification And Combustion Studies On Ammonium Nitrate And Propellant CompositionsOommen, Charlie 07 1900 (has links) (PDF)
No description available.
|
14 |
The effect of departure from ideality of a multiply ionized monatomic gas on the performance of rocket enginesPerkins, John Noble 26 April 2010 (has links)
Using the Debye-Huckle approximation, the effects of Coulomb interactions on the equilibrium, frozen, and nonequilibrium flow of an ionized gas have been investigated. The gas is assumed to be monatomic, electrically neutral, and thermal equilibrium (i.e., a one temperature fluid); but the composition of the gas is arbitrary, that is, multiple ionization of any degree is allowed.
The thermodynamic variables are derived starting from the appropriate expression for the Helmholtz free energy. Using Boltzmann statistics and assuming that the velocity distribution functions are given by their Maxwellian values, the rate of ionization is derived for atom-atom, atom-ion, and atom-electron collisions.
The resulting expressions are then employed in solving the quasi-one-dimensional flow in a converging-diverging nozzle for the equilibrium, frozen, and nonequilibrium cases. Numerical examples, using argon as the working substance, are discussed and the results presented graphically. The results of these calculations indicate that, for single ionization, the effect of Coulomb interactions on the performance of rocket engines is negligible; but that data obtained from hypersonic arc jet wind-tunnels can be significantly influenced by the presence of the interactions. / Ph. D.
|
15 |
Development and modeling of a dual-frequency microwave burn rate measurement system for solid rocket propellantFoss, David T. 21 November 2012 (has links)
A dual-frequency microwave bum rate measurement system for solid rocket motors has been developed and is described. The system operates in the X-band (8.2-12.4 Ghz) and uses two independent frequencies operating simultaneously to measure the instantaneous bum rate in a solid rocket motor. Modeling of the two frequency system was performed to determine its effectiveness in limiting errors caused by secondary reflections and errors in the estimates of certain material properties, particularly the microwave wavelength in the propellant. Computer simulations based upon the modeling were performed and are presented. Limited laboratory testing of the system was also conducted to determine its ability perform as modeled.
Simulations showed that the frequency ratio and the initial motor geometry (propellant thickness and combustion chamber diameter) determined the effectiveness of the system in reducing secondary reflections. Results presented show that higher frequency ratios provided better error reduction. Overall, the simulations showed that a dual frequency system can provide up to a 75% reduction in burn rate error over that returned by a single frequency system. The hardware and software for dual frequency measurements was developed and tested, however, further instrumentation work is required to increase the rate at which data is acquired using the methods presented here. The system presents some advantages over the single frequency method but further work needs to be done to realize its full potential. / Master of Science
|
16 |
3-D flow and performance of a tandem-bladed rocket pump inducerExcoffon, Tony 04 May 2010 (has links)
This thesis presents the results of a three-dimensional flow calculation with a model of turbulent viscosity for a tandem-bladed inducer in air. The purpose is to understand the 3D flow development through the two blade rows and to compare the results of the calculation 'with experimental data.
A literature review tells the story of the inducer from the flat-plate design to the tandem-bladed configuration and explains its role in cavitation management. The results of a previous 3D-calculation on the first blade row alone are summarized and the MEFP code is briefly described.
The generation of a grid for the second blade row is presented in detail. Then, it is shown how this new grid is linked to the previous grid for the first blade row to get an overall calculation grid for the whole inducer. Two 2D blade-to-blade calculations are shown. They give an insight into the flow behavior through the inducer and allow a test of the grid.
The results of the 3D-calculation are discussed and presented extensively with the velocity vectors, the static pressure contours and the rotary stagnation pressure contours on blade-to-blade, meridional and iso-8 vie"rs. The three passages of the second blade row appear to behave differently with respect to their position relative to the wake of the first blade row. The experimental data are used for comparison at three measurement planes in terms of pressure and velocity. They show a fairly good agreement. The three-dimensional calculation predicts also very well the work done and the efficiency of the overall inducer. / Master of Science
|
Page generated in 0.0626 seconds