• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 9
  • 9
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental analysis of plug nozzles

Balasaygun, Eray, 1941- January 1964 (has links)
No description available.
2

Experimental determination of three-dimensional liquid rocket nozzle admittances

Bell, William Alvin 08 1900 (has links)
No description available.
3

The effect of nozzle nonlinearities on the nonlinear stability of liquid rocket motors

Padmanabhan, Mysore Srikantiah 12 1900 (has links)
No description available.
4

Wake closure conditions in plug nozzle flowfields /

Lang, Derek Edward. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 132-140).
5

Damping of axial instabilities by solid propellant rocket exhaust nozzles

Janardan, Bangalore Ananthamurthy 08 1900 (has links)
No description available.
6

Two-dimensional, compressible time-dependent nozzle flow

Sheppard, Richard Roy 08 1900 (has links)
No description available.
7

Flow study of the nozzle region of the space shuttle solid rocket motor

Squire, Daniel E. 12 April 2010 (has links)
A flow visualization study was conducted to analyze flow characteristics inside the solid rocket motor (SRM) used on the NASA space shuttle. The objective of this investigation was to determine whether the internal flow structure could adversely affect the nozzle/case joint and the surrounding casing. Also, it was hoped to learn more about causes of low level acoustic pressure oscillations observed during SRM test firings. The SRM was simulated by water flow through a plexiglas model mounted in a water tunnel. Dye and hydrogen bubble visualization techniques along with hot water analysis methods were used to detect flow patterns. Visual results recorded on video tape indicated strong circumferential and recirculation flows around the nozzle. Vortex formation near the nozzle inlet was also observed and was the prime focus of this investigation. Because the nozzle inlet geometry was very similar to an aircraft engine inlet operating close to the ground, vortices seen in this investigation were believed to behave like vortices seen around engine inlets. Based on the results from this investigation and the results of previous engine inlet vortex studies, it was concluded that the nozzle vortices could be the excitation source of SRM pressure oscillations. / Master of Science
8

Numerical simulation of the structural response of a composite rocket nozzle during the ignition transient.

Pitot de la Beaujardiere, Jean-Francois Philippe. January 2009 (has links)
The following dissertation describes an investigation of the structural response behaviour of a composite solid rocket motor nozzle subjected to thermal and pressure loading during the motor ignition period, derived on the basis of a multidisciplinary numerical simulation approach. To provide quantitative and qualitative context to the results obtained, comparisons were made to the predicted aerothermostructural response of the nozzle over the entire motor burn period. The study considered two nozzle designs – an exploratory nozzle design used to establish the basic simulation methodology, and a prototype nozzle design that was employed as the primary subject for numerical experimentation work. Both designs were developed according to fundamental solid rocket motor nozzle design principles as non-vectoring nozzles for deployment in medium sized solid rocket booster motors. The designs feature extensive use of spatially reinforced carbon-carbon composites for thermostructural components, complemented by carbon-phenolic composites for thermal insulation and steel for the motor attachment substructures. All numerical simulations were conducted using the ADINA multiphysics finite element analysis code with respect to axisymmetric computational domains. Thermal and structural models were developed to simulate the structural response of the exploratory nozzle design in reference to the instantaneous application of pressure and thermal loading conditions derived from literature. Ignition and burn period response results were obtained for both quasi-static and dynamic analysis regimes. For the case of the prototype nozzle design, a flow model was specifically developed to simulate the flow of the exhaust gas stream within the nozzle, for the provision of transient and steady loading data to the associated thermal and structural models. This arrangement allowed for a more realistic representation of the interaction between the fluid, thermal and structural fields concerned. Results were once again obtained for short and long term scenarios with respect to quasi-static and dynamic interpretations. In addition, the aeroelastic interaction occurring between the nozzle and flow field during motor ignition was examined in detail. The results obtained in the present study provided significant indications with respect to a variety of response characteristics associated with the motor ignition period, including the magnitude and distribution of the displacement and stress responses, the importance of inertial effects in response computations, the stress response contributions made by thermal and pressure loading, the effect of loading condition quality, and the bearing of the rate of ignition on the calculated stress response. Through comparisons between the response behaviour predicted during the motor ignition and burn periods, the significance of considering the ignition period as a qualification and optimisation criterion in the design of characteristically similar solid rocket motor nozzles was established. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2009.
9

Optimisation of solid rocket motor blast tube and nozzle assemblies using computational fluid dynamics

Scholtz, Kelly Burchell January 2017 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2017. / A framework for optimising a tactical solid rocket motor nozzle is established and investigated within the ANSYS Workbench environment. Simulated results are validated against thrust measurements from the static bench firing of a full-scale rocket. Grid independence is checked and achieved using inflation based meshing. A rocket nozzle contour is parametrized using multiple control points along a spline contour. The design of experiments table is populated by a central composite design method and the resulting response surfaces are used to find a thrust optimised rocket nozzle geometry. CFD results are based on Favre-mass averaged Navier-Stokes equations with turbulence closure implemented with the Menter SST model. Two optimisation algorithms (Shifted Hammersley Sampling and Nonlinear Programming by Quadratic Lagrangian) are used to establish viable candidates for maximum thrust. Comparisons are made with a circular arc, Rao parabolic approximation and conical nozzle geometries including the CFD simulation there-off. The effect of nozzle length on thrust is simulated and optimised within the framework. Results generally show increased thrust as well as demonstrating the framework's potential for further investigations into nozzle geometry optimisation and off-design point characterisation.

Page generated in 0.0754 seconds