Spelling suggestions: "subject:"bibration (aeronautics) damping"" "subject:"bibration (aeronautics) camping""
1 |
Damping of axial instabilities by solid propellant rocket exhaust nozzlesJanardan, Bangalore Ananthamurthy 08 1900 (has links)
No description available.
|
2 |
Modal analysis on a stiffened panel : an application of laser vibrometryJones, Janeen Ayana 08 1900 (has links)
No description available.
|
3 |
Multi-sensor control for 6-axis active vibration isolation /Thayer, Douglas Gary. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves[126]-128).
|
4 |
Acoustic monitoring and control system to determine the properties of damping materialsStahlberg, Martin January 2012 (has links)
Experience shows that the noise and sound quality in vehicles are often a recurring criticism. The bodies of modern vehicles consist predominantly of thin sheets of metal. It is hard to prevent the excitation of bending vibrations and the subsequent emission of disturbing noise while driving. The noise spectrum in a car that can be heard by the driver is from ”latent roar” to ”chattering” noise of the body and engine. In automotive vehicles damped materials, especially plastics or materials made from sheet metal and surface damping treatments, are used. Those have high internal energy losses and damp sound oscillatory systems found in the body or interior of cars. A further advantage of such treated components is that they are applied to existing components working over wide temperature and frequency ranges. Many companies provide such ”sound-absorbing compounds”. The requirements for these damping materials are high temperature-resistance, water repellence, fuel and oil-resistance and good adhesion to the base material [17]. The acoustic properties, especially the damping of the plate vibrations through rubber are of interest. the question arises how can the damping coeficient of coated metal sheets can be measured and secondly, by how much the road noise is reduced when built-in sheets are coated with a known damped material. With the Oberst Bar Test Method (named after Dr. H. Oberst) the properties are determined of the internal damping materials that can be used to simulate mechanical constructions to determine damping of larger surfaces. This method describes a laboratory test procedure for measuring the mechanical properties of damped materials. A block diagram of the test system consisting of a damped material bonded to a vibrating cantilever steel bar is shown in figure 2.1. This method is useful for testing materials such as metals, enamels, ceramics, rubbers, plastics, reinforced epoxy matrices and wood. In addition to damping measurement, the test allows for the determination of the Young’s modulus E of the material. E is calculated from the resonance frequency of a given mode and from the physical constants of the bar. By associating the damping factor with the Young’s modulus, a complex quantity is defined which is called the Complex Modulus of Elasticity. Measurements of dynamic mechanical properties are also useful in the research on the molecular structure of materials.
|
5 |
Higher harmonic blade pitch control : a system for helicopter vibration reductionShaw, John January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO. / Vita. / Includes bibliographical references. / by John Shaw. / Ph.D.
|
6 |
An analysis of the flutter and damping characteristics of helicopter rotorsViswanathan, Sathy Padmanaban 05 1900 (has links)
No description available.
|
7 |
Finite element analysis design and optimization of an adaptive circular composite panel for vibration suppressionSakagawa, Randy January 2006 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2006. / Includes bibliographical references (leaves 92-93). / x, 93 leaves, bound ill. 29 cm
|
8 |
Active damping of a structure with low-frequency and closely- spaced modes: experiments and theorySchamel, George C. January 1985 (has links)
This thesis covers the investigation of active damping on a cruciform beam laboratory structure along with the development of this structure. Also important to this and other research was the development of a calibration apparatus that produces accurate, repeatable calibrations for several types of laboratory instruments. The cruciform beam model is developed out of a simpler beam-cable model with the addition of a crosspiece that produces a pair of closely-spaced modes. This model is developed theoretically and verified experimentally. Experimental verification is also obtained for theoretical results in the simultaneous design of a structure and control system. A spatial filtering method for determining the modal response of the structure from the physical response is also investigated. / M.S.
|
9 |
Helicopter stability during aggressive maneuversUnknown Date (has links)
The dissertation investigates helicopter trim and stability during level bank-angle and diving bank-angle turns. The level turn is moderate in that sufficient power is available to maintain level maneuver, and the diving turn is severe where the power deficit is overcome by the kinetic energy of descent. The investigation basically represents design conditions where the peak loading goes well beyond the steady thrust limit and the rotor experiences appreciable stall. The major objectives are: 1) to assess the sensitivity of the trim and stability predictions to the approximations in modeling stall, 2) to correlate the trim predictions with the UH-60A flight test data, and 3) to demonstrate the feasibility of routinely using the exact fast-Floquet periodic eigenvector method for mode identification in the stability analysis. The UH-60A modeling and analysis are performed using the comprehensive code RCAS (Army's Rotorcraft Comprehensive Analysis System). The trim and damping predictions are based on quasisteady stall, ONERA-Edlin vi (Equations Differentielles Lineaires) and Leishman-Beddoes dynamic stall models. From the correlation with the test data, the strengths and weaknesses of the trim predictions are presented. / by Ranjith Mohah. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
|
10 |
Application of hybrid methodology to rotors in steady and maneuvering flightRajmohan, Nischint 07 July 2010 (has links)
Helicopters are versatile flying machines that have capabilities that are unparalleled by fixed wing aircraft, such as operating in hover, performing vertical take-off and landing on unprepared sites. However, modern helicopters still suffer from high levels of noise and vibration caused by the physical phenomena occurring in the vicinity of the rotor blades. Therefore, improvement in rotorcraft design to reduce the noise and vibration levels requires understanding of the underlying physical phenomena, and accurate prediction capabilities of the resulting rotorcraft aeromechanics. The goal of this research is to study the aeromechanics of rotors in steady and maneuvering flight using hybrid Computational Fluid Dynamics (CFD) methodology. The hybrid CFD methodology uses the Navier-Stokes equations to solve the flow near the blade surface but the effect of the far wake is computed through the wake model. The hybrid CFD methodology is computationally efficient and its wake modeling approach is non-dissipative making it an attractive tool to study rotorcraft aeromechanics.
Several enhancements were made to the CFD methodology and it was coupled to a Computational Structural Dynamics (CSD) methodology to perform a trimmed aeroelastic analysis of a rotor in forward flight. The coupling analyses, both loose and tight were used to identify the key physical phenomena that affect rotors in different steady flight regimes. The modeling enhancements improved the airloads predictions for a variety of flight conditions. It was found that the tightly coupled method did not impact the loads significantly for steady flight conditions compared to the loosely coupled method. The coupling methodology was extended to maneuvering flight analysis and the flight test control angles were employed to enable the maneuvering flight analysis. The fully coupled model provided the presence of three dynamic stall cycles on the rotor in maneuver.
Analysis of maneuvering flight requires knowledge of the pilot input control pitch settings, and the vehicle states. As the result, these computational tools cannot be used for analysis of loads in a maneuver that has not been duplicated in a real flight. This is a significant limitation if these tools are to be selected during the design phase of a helicopter where its handling qualities are evaluated in different trajectories. Therefore, a methodology was developed to couple the CFD/CSD simulation with an inverse flight mechanics simulation to perform the maneuver analysis without using the flight test control input. The methodology showed reasonable convergence in steady and maneuvering flight regimes and control angle predictions compared fairly well with test data. In the maneuvering flight regions, the convergence was slower due to relaxation techniques used for the numerical stability. Further, the enhancement of the rotor inflow computations in the inverse simulation through implementation of a Lagrangean wake model improved the convergence of the coupling methodology.
|
Page generated in 0.1698 seconds