• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Igneous and metamorphic charnockitic rocks in the Southern Marginal Zone of the Limpopo Belt with special emphasis on the Matok Enderbitic - Granatic Suite.

Bohlender, Frank 04 June 2014 (has links)
D.Phil. (Geology) / Please refer to full text to view abstract
2

Transformation of tonalitic gneiss into potassic garnet-sillimanite gneiss in a deep crustal shear zone in the Limpopo belt

Mokgatlha, Kgomotso P.B. 17 November 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
3

The tectonic evolution of the rocks comprising the Venetia Klippe, Limpopo Belt, South Africa, with emphasis on carbonate and calc-silicate rocks and pegmatite

Twiggs, C. 16 August 2012 (has links)
M.Sc. / This thesis involves a study ofthe geology surrounding the —530 Ma to —519 Ma Venetia kimberlite pipes situated between AIldays and Messina (now renamed Musina) in the Beit Bridge Terrane of the Limpopo Belt, South Africa. The Limpopo Belt is an eastnortheast trending high grade metamorphic terrane thought until recently to be the result ofa collisional event between the Kaapv_aal and Zimbabwe Cratons between 2.7 and 2.65 Ga. However, recent studies have challenged this concept and suggest that the assembly was more complex and took place over an extended period of time ending at —2.04 Ga. This study involved surface mapping of the Farms Rugen (south) and Ostrolenca, providing additional information to help with mine planning, grade control and exploration. It forms a portion of a project initiated between Venetia Mine, the Venetia- Limpopo Nature Reserve and Professor Jay Barton of RAU to geologically map in detail the area around the pipes (scale < 1:10 000) and to study various aspects of the regional geology. The rock types into which the Venetia kimberlite pipes intruded belong to the Venetia klippe, an east-west trending synclinal structure with the axial plane dipping steeply northwards. Lithologically, the Venetia klippe comprises four layered units in which interlayered granitic or arkosic quartzofeldspathic gneisses, with and without biotite and garnet, and para and ortho-amphibolite, quartzite and meta-carbonate rocks (marble and limestone), banded iron formation and calc-silicate rock occur. Geochemical analysis (SEM and electron microprobe) of the meta-carbonates (re-crystallised magnesian limestone, coarse-grained marble and fine-grained foliated marble), indicate the precursors to be magnesian limestone, dolomite and limestone. Several events have been identified during the structural evolution of the area. They include: formation of gneissic metamorphic layering, tectonic suturing between different lithologies, formation of a syncline and east-west strike-slip faulting, north-south trending folds and northeast-southwest dextral strike-slip faulting, tourmaline bearing pegmatite emplacement, dolerite intrusion, tourmaline absent pegmatite emplacement, kimberlite emplacement and reactivation of pre-existing structures. Depositional structures only in the fine-grained foliated marble are preserved, e.g. graded bedding, cross-bedding, rip-up clasts and channels. These structures suggest deposition of the carbonates in two main depositional environments; peritidal (channels and rip-up clasts) and subtidal shelf (graded bedding and cross-bedding). A study of pegmatites in the area shows two main pegmatite types: tourmaline bearing and tormaline absent, each locally displaying a zonation. Mineralogically, the pegmaties are rich in quartz and albite and lack K-feldspar so they are classified as sodic-rich or plagio-pegmatites. Step heating 40Ar/39Ar analyses of muscovite from undeformed pegmatite yields an age of —2.0 Ga, which is interpreted to represent the time of pegmatite emplacement into the Venetia klippe rocks. Structurally, the pegmatites are sheet-like bodies cross-cutting compositional layering, joints, faults, folds and the dolerite, except for the older tourmaline bearing pegmatite that has intruded along east-west faults, but not northeast-southwest trending faults. By applying the principles of a dike propagation model, the source of the Venetia pegmatites should be greater than 5X5X5 km in volume and a maximum of 10km away. An appropriate granitic source has been recognized on the farm Gotha to the south of the mine by Martina Barnett. Leucocratic granodiorite, tonalite and granite with minor xenoliths of amphibolite, quartzite and magnetite quartzite define the Gotha Granitic Complex and pegmatite decreases in abundance away from it to the north and east. Deposition of Unit 3 lithologies into a rifted basin and an ancient epeiric sea is possible. However, there is more evidence (peritidal and shelf environments of the metacarbonates) and clean mature quartzites to suggest deposition into a passive continental margin or epeiric sea similar to the Malmani dolomites of the Transvaal Supergroup.
4

Mineralogy and geochemistry of kaolins in oxidic soils developed from different parent rocks in Limpopo Province, South Africa

Oyebanjo, Omosalewa Omolara 08 1900 (has links)
PhDENV / Department of Ecology and Resource Management / Kaolin dominated soils are common in the tropical and subtropical regions. People depend on kaolin-rich soils for agricultural production of food and fiber. The most popular of all South African soils is the Hutton form which accounts for the marvelous redness of the landscape across the Country. The apedal (structureless) soils in the group are characterised by a relatively low CEC (< 11 cmolc kg-1) reflecting oxidic mineralogy with predominantly kaolinitic assemblage. The geochemical and mineralogical composition of soil kaolin has significant implications on soil fertility, geochemical exploration and engineering properties. Despite the dominance of kaolin in these soils, little is known of their properties in the medium. The nature of kaolin minerals in soils varies with parent material, degree of weathering and pedogenic environment. Most studies conducted in South Africa on kaolins are limited to reference kaolins with little or no publication on soil kaolins, hence, this study. This research involved the evaluation of mineralogical and geochemical characteristics of oxidic soils and soil kaolins developed from four (4) selected parent rocks which were basalt, granite, arkosic sandstone, and gneiss. Soils developed from quartzite were selected as control. Representative soil samples collected from profiles developed from the different parent rocks were analysed for physico-chemical, mineralogical, and geochemical data. The mineralogical and geochemical data obtained by x-ray diffractometry (XRD), x-ray fluorescence (XRF), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used in unraveling the influence of the provenance and degree of weathering on the soil characteristics. The mineralogical and geochemical data for soil kaolins were determined through XRD, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis and differential scanning calorimetry, XRF, and LA-ICPMS to establish their mineralogical and geochemical properties with respect to their parent rocks. Comparison between the soil kaolins and selected reference kaolins were also conducted. The phosphorus (P) sorption data acquired photometrically were employed to evaluate the relationship between the P sorption capacities of the soils and soil kaolins. The influence of soil properties on the fertility of the soils were assessed based on the physico-chemical (pH, particle size distribution, and electrical conductivity (EC)) and chemical (organic matter (OM) content, cation exchange capacity (CEC), available P, exchangeable cations (Ca, K, Mg, Na, and Al), and P sorption) data. The mineralogical and geochemical data for the parent rocks were obtained by XRD, optical microscopy, XRF, and LA-ICPMS. Multivariate statistical analyses were also conducted. Results showed that the dominant colour in the studied bulk soils was dusky red (31 %) followed by brown (23 %), reddish brown, yellowish red, and yellowish brown (23 %) as well as strong brown, dark brown, reddish grey, very dark greyish brown, and dark red. Soil textures were clayey to sandy loamy with OM contents between 0.41 and 4.76 %. The pH, EC, CEC, exchangeable cations, and available P values generally ranged from 5.22 to 8.38, 10.25 to 114.40 μS/cm, 2.93 to 18.30 cmol/kg, 0.03 to 13.92 cmol/kg, and <0.01 to 54.99 mg/kg, respectively. Kaolinite and quartz were the dominant phases for soils developed from basalt whereas, quartz and plagioclase were the dominant mineral phases in soils developed from granite, arkosic sandstone, and gneiss, respectively. Other minerals present in the soils were microcline, muscovite, hematite, goethite, montmorrillonite, anatase, gibbsite, chlorite, and actinolite. Geochemical compositions of the bulk soils show relative enrichment of Fe2O3, TiO2, CaO, K2O, MgO, MnO, and Na2O (except for CaO, K2O, MgO, MnO, and Na2O in soils developed from basalt). Chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA) values varied between 54.92 and 99.81 % which suggest low to high degree of chemical weathering. The ACN-K and A-CNK-FM diagrams for the different soils also support these observations. Trace elements were generally enriched in soils developed from basalt and gneiss (except for Rb, Sr, and Ba in soils developed from basalt), but were depleted in soils developed from granite and arkosic sandstone (except for Cr and Ta). The principal factors responsible for the mineralogical and geochemical characteristics of the soils were the parent rocks and degree of weathering. In the soil kaolins, the dominant clay mineral was kaolinite accounting for 23 to 85 wt % followed by montmorrillonite, chlorite, and gibbsite. The non-clay minerals like quartz, plagioclase, muscovite, microcline, anatase, goethite, hematite, and actinolite accounted for the remaining percentages. The soil kaolins were characterised by thin platy kaolinite particles with partially to poorly-ordered structural order. The platy kaolinite crystals have their longest dimension sizes between 0.06 and 0.25 μm. The dehydroxylation temperatures for the studied soil kaolins ranged from 425 to 475 ˚C. The SiO2/Al2O3 ratio was lowest in soil kaolins developed from basalt and higher in soils developed from granite, arkosic sandstone, and gneiss which is consistent with their mineralogy since the former have more kaolinite. Higher Fe2O3 and CEC values were obtained relative to reference kaolins which could be attributed to the presence of more structural iron in the soil kaolins as well as their smaller crystal sizes. The presence of weatherable and accessory minerals accounted for the enrichment of Co, Ni, Cu, Zn, and Pb in the soil kaolins. The kaolinite in the soils were formed by leaching and desilication of the primary minerals in the parent rocks under suboxic conditions. H-type P adsorption isotherms obtained for both the soils and soil kaolins indicated their high affinity for phosphorus by chemisorption. The average maximum P adsorption values were in decreasing order of soils developed from basalt > granite > arkosic sandstone > quartzite (control) > gneiss, respectively whereas, for soil kaolins is basalt > granite > quartzite (control) > arkosic sandstone > gneiss, respectively. Relative to other soils developed from different parent rocks, soils developed from basalt (with more clay content) had higher capacity and buffer power for P adsorption. The standard P requirements for the soils ranged from 7.78 to 92.91 mgP/kg and were classified as low based on the Langmuir model. Significant correlation between the P adsorption parameters for the soils and soil kaolins indicated that the later could be taken as a good predictor for P sorption dynamics in the soils. Electrical conductivity of the soils were taken to be negligible in interfering with plant growth. The available P values were generally below the critical level of 12 – 15 mg/kg for soils developed from basalt, gneiss, and quartzite (control) but higher in soils developed from granite and arkosic sandstone. All the soil evaluation factor (SEF) average values estimated were greater than five indicating that they are not of poor soil fertility. The correlation results between the soil properties and P sorption parameters suggest that several variables can influence the P sorption dynamics of the soil. Regression analyses further indicated that CEC, pH, OM, and clay content in the soils account for 99 % bounding P energy variation whereas, Fe2O3 accounts for 76 % P sorption maximum variation in the soils. In addition, variations in Fe2O3 and sand contents in the soils account for 96 % and 95 % maximum buffering capacity and external P requirement (EPR) variations, respectively. Models to advance the interplay between the various soil properties and P sorption parameters in the soils were developed. Mineralogical and geochemical characteristics of the soils were principally controlled by the parent rocks and degree of weathering. The soil kaolins displayed significant differences relative to reference kaolins. Langmuir model is most suited for describing P sorption in soils and soil kaolins developed from different parent rocks within the studied area. P sorption parameters for the soils can readily be obtained from the P sorption parameters of the kaolins present in them. EPR obtained and models for predicting P sorption parameters from selected soil properties developed for the various soils will improve the efficiency of routine P fertilizer applications. Iron oxide (Fe2O3) played the most crucial role in explaining the P sorption dynamics of the soils. The major contributions from this study have been: better understanding of the influence of parent rock characteristics and degree of weathering on the soil characteristics, the nature of soil kaolins and its influence on soil properties as well as P sorption dynamics in soils have been better established, and improvement of the understanding on the relationship between soil properties and P sorption dynamics in the soils. / NRF

Page generated in 0.0687 seconds