• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mineralogy, geochemistry and health impacts of earth materials consumed by humans in Vhembe District, Limpopo Province, South Africa

Momoh, Abhuh 17 September 2013 (has links)
PhD.G (Environmental Geology) / Department of Mining and Environmental Geology
2

A geological, petrological and mineralogical study of the UG3 chromitite seam at Modikwa Platinum Mine : significance to exploration and PGE resources

Machumele, Nkateko Jones January 2014 (has links)
The UG3 at Modikwa Platinum Mine occurs as a platiniferous, planar chromitite seam. It is stratigraphically located in the Upper Critical Zone of the Eastern Bushveld Complex. Field work study comprise of underground mapping, sampling, surface mapping, borehole core logging, microprobing and microscopic investigations carried out at the Rhodes University. The UG3 at the Modikwa Platinum Mine is about 22cm thick chromitite seam underlain by a white fine grained anorthosite and overlain by a brown medium grained feldspathic pyroxenite. It is an incomplete cyclic unit consisting of chromite and feldspathic pyroxenite. The UG3 reef at the Modikwa Platinum Mine lease area represents a Platinum Group Metal resource of 300 million tons of ore at an in situ grade of 2.5g/t. Under the current market conditions the UG3 reef remains unprofitable to mine in an underground operation due to the operational cost involved. However, it has been illustrated that the UG3 chromitite seam can increase profit margins in an open pit operation provided it is mined together with the economic UG2 chromitite seam. The extraction of the UG3 as ore in the four Modikwa UG2 open pits would result in a combined operating cash profit of R330 million. The UG3 chromitite seam is platiniferous. The platinum-group minerals (PGM) range in size from less than 10μm to about 70μm. The PGMs are associated with sulphides and are both located in the interstitial silicates and are concentrated in the chromitite seam. The PGMs show a strong preference to contact boundaries of the silicate grains, the chromite grains and the sulphide phases. In some instances, they are enclosed within the chromite grains in association with sulphides. The general sulphide assemblage comprises pentlandite and chalcopyrite whereas, the PGMs assemblage comprises cooperite, ferroplatinum, laurite, FeRhS and PtRhS.
3

Mineralogy and geochemistry of kaolins in oxidic soils developed from different parent rocks in Limpopo Province, South Africa

Oyebanjo, Omosalewa Omolara 08 1900 (has links)
PhDENV / Department of Ecology and Resource Management / Kaolin dominated soils are common in the tropical and subtropical regions. People depend on kaolin-rich soils for agricultural production of food and fiber. The most popular of all South African soils is the Hutton form which accounts for the marvelous redness of the landscape across the Country. The apedal (structureless) soils in the group are characterised by a relatively low CEC (< 11 cmolc kg-1) reflecting oxidic mineralogy with predominantly kaolinitic assemblage. The geochemical and mineralogical composition of soil kaolin has significant implications on soil fertility, geochemical exploration and engineering properties. Despite the dominance of kaolin in these soils, little is known of their properties in the medium. The nature of kaolin minerals in soils varies with parent material, degree of weathering and pedogenic environment. Most studies conducted in South Africa on kaolins are limited to reference kaolins with little or no publication on soil kaolins, hence, this study. This research involved the evaluation of mineralogical and geochemical characteristics of oxidic soils and soil kaolins developed from four (4) selected parent rocks which were basalt, granite, arkosic sandstone, and gneiss. Soils developed from quartzite were selected as control. Representative soil samples collected from profiles developed from the different parent rocks were analysed for physico-chemical, mineralogical, and geochemical data. The mineralogical and geochemical data obtained by x-ray diffractometry (XRD), x-ray fluorescence (XRF), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used in unraveling the influence of the provenance and degree of weathering on the soil characteristics. The mineralogical and geochemical data for soil kaolins were determined through XRD, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis and differential scanning calorimetry, XRF, and LA-ICPMS to establish their mineralogical and geochemical properties with respect to their parent rocks. Comparison between the soil kaolins and selected reference kaolins were also conducted. The phosphorus (P) sorption data acquired photometrically were employed to evaluate the relationship between the P sorption capacities of the soils and soil kaolins. The influence of soil properties on the fertility of the soils were assessed based on the physico-chemical (pH, particle size distribution, and electrical conductivity (EC)) and chemical (organic matter (OM) content, cation exchange capacity (CEC), available P, exchangeable cations (Ca, K, Mg, Na, and Al), and P sorption) data. The mineralogical and geochemical data for the parent rocks were obtained by XRD, optical microscopy, XRF, and LA-ICPMS. Multivariate statistical analyses were also conducted. Results showed that the dominant colour in the studied bulk soils was dusky red (31 %) followed by brown (23 %), reddish brown, yellowish red, and yellowish brown (23 %) as well as strong brown, dark brown, reddish grey, very dark greyish brown, and dark red. Soil textures were clayey to sandy loamy with OM contents between 0.41 and 4.76 %. The pH, EC, CEC, exchangeable cations, and available P values generally ranged from 5.22 to 8.38, 10.25 to 114.40 μS/cm, 2.93 to 18.30 cmol/kg, 0.03 to 13.92 cmol/kg, and <0.01 to 54.99 mg/kg, respectively. Kaolinite and quartz were the dominant phases for soils developed from basalt whereas, quartz and plagioclase were the dominant mineral phases in soils developed from granite, arkosic sandstone, and gneiss, respectively. Other minerals present in the soils were microcline, muscovite, hematite, goethite, montmorrillonite, anatase, gibbsite, chlorite, and actinolite. Geochemical compositions of the bulk soils show relative enrichment of Fe2O3, TiO2, CaO, K2O, MgO, MnO, and Na2O (except for CaO, K2O, MgO, MnO, and Na2O in soils developed from basalt). Chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA) values varied between 54.92 and 99.81 % which suggest low to high degree of chemical weathering. The ACN-K and A-CNK-FM diagrams for the different soils also support these observations. Trace elements were generally enriched in soils developed from basalt and gneiss (except for Rb, Sr, and Ba in soils developed from basalt), but were depleted in soils developed from granite and arkosic sandstone (except for Cr and Ta). The principal factors responsible for the mineralogical and geochemical characteristics of the soils were the parent rocks and degree of weathering. In the soil kaolins, the dominant clay mineral was kaolinite accounting for 23 to 85 wt % followed by montmorrillonite, chlorite, and gibbsite. The non-clay minerals like quartz, plagioclase, muscovite, microcline, anatase, goethite, hematite, and actinolite accounted for the remaining percentages. The soil kaolins were characterised by thin platy kaolinite particles with partially to poorly-ordered structural order. The platy kaolinite crystals have their longest dimension sizes between 0.06 and 0.25 μm. The dehydroxylation temperatures for the studied soil kaolins ranged from 425 to 475 ˚C. The SiO2/Al2O3 ratio was lowest in soil kaolins developed from basalt and higher in soils developed from granite, arkosic sandstone, and gneiss which is consistent with their mineralogy since the former have more kaolinite. Higher Fe2O3 and CEC values were obtained relative to reference kaolins which could be attributed to the presence of more structural iron in the soil kaolins as well as their smaller crystal sizes. The presence of weatherable and accessory minerals accounted for the enrichment of Co, Ni, Cu, Zn, and Pb in the soil kaolins. The kaolinite in the soils were formed by leaching and desilication of the primary minerals in the parent rocks under suboxic conditions. H-type P adsorption isotherms obtained for both the soils and soil kaolins indicated their high affinity for phosphorus by chemisorption. The average maximum P adsorption values were in decreasing order of soils developed from basalt > granite > arkosic sandstone > quartzite (control) > gneiss, respectively whereas, for soil kaolins is basalt > granite > quartzite (control) > arkosic sandstone > gneiss, respectively. Relative to other soils developed from different parent rocks, soils developed from basalt (with more clay content) had higher capacity and buffer power for P adsorption. The standard P requirements for the soils ranged from 7.78 to 92.91 mgP/kg and were classified as low based on the Langmuir model. Significant correlation between the P adsorption parameters for the soils and soil kaolins indicated that the later could be taken as a good predictor for P sorption dynamics in the soils. Electrical conductivity of the soils were taken to be negligible in interfering with plant growth. The available P values were generally below the critical level of 12 – 15 mg/kg for soils developed from basalt, gneiss, and quartzite (control) but higher in soils developed from granite and arkosic sandstone. All the soil evaluation factor (SEF) average values estimated were greater than five indicating that they are not of poor soil fertility. The correlation results between the soil properties and P sorption parameters suggest that several variables can influence the P sorption dynamics of the soil. Regression analyses further indicated that CEC, pH, OM, and clay content in the soils account for 99 % bounding P energy variation whereas, Fe2O3 accounts for 76 % P sorption maximum variation in the soils. In addition, variations in Fe2O3 and sand contents in the soils account for 96 % and 95 % maximum buffering capacity and external P requirement (EPR) variations, respectively. Models to advance the interplay between the various soil properties and P sorption parameters in the soils were developed. Mineralogical and geochemical characteristics of the soils were principally controlled by the parent rocks and degree of weathering. The soil kaolins displayed significant differences relative to reference kaolins. Langmuir model is most suited for describing P sorption in soils and soil kaolins developed from different parent rocks within the studied area. P sorption parameters for the soils can readily be obtained from the P sorption parameters of the kaolins present in them. EPR obtained and models for predicting P sorption parameters from selected soil properties developed for the various soils will improve the efficiency of routine P fertilizer applications. Iron oxide (Fe2O3) played the most crucial role in explaining the P sorption dynamics of the soils. The major contributions from this study have been: better understanding of the influence of parent rock characteristics and degree of weathering on the soil characteristics, the nature of soil kaolins and its influence on soil properties as well as P sorption dynamics in soils have been better established, and improvement of the understanding on the relationship between soil properties and P sorption dynamics in the soils. / NRF
4

Mineralogy and geochemistry of geophagic materials from Mashau Village in Limpopo Province, South Africa

Mashao, Unarine 18 May 2018 (has links)
MESMEG / Department of Mining and Environmental Geology / Literature indicated that several mineralogical identification studies have been carried out on clays but few have focused on the characterisation of geophagic materials from South Africa. Large quantities of earth materials are consumed daily in Mashau Village, however, their mineral content and geochemical compositions had not been determined. Moreover, though the consumption of geophagic materials is very common in the village, the associated health implications had not been addressed. Thus, the main aim of the research was to mineralogically and geochemically characterise geophagic materials commonly ingested in Mashau Village and infer on possible health implications that could result from their consumption. Questionnaires were administered to geophagists in the study area with the aim of generating data on the prevalence of geophagia and the motivations for the practice. Geophagic soils and their parent rocks (for determination of provenance) were sampled and analysed for mineralogical and geochemical content. Geophagic soil samples were subjected to the following physicochemical analyses: colour, particle size distribution, pH, cation exchange capacity (CEC) and electrical conductivity (EC). An x-ray diffractometer (XRD) was used for mineralogical analysis while major oxides and trace elements abundances were determined using x-ray fluorescence (XRF) spectrometry and laser ablation inductively coupled mass spectrometry (LA-ICP-MS), respectively. Furthermore, provenance of the geophagic materials was determined using data obtained from mineralogical and geochemical analysis. Inferred health implications were based on the physico-chemical, mineralogical and geochemical data obtained. Outcomes of the questionnaire survey revealed craving to be the motivation for geophagia in Mashau Village. Although the practice seemed to be prevalent in females of certain ages, it was certainly not limited to gender, age, educational level or socio-economic status. Out of the 20 geophagic samples, 3 samples were brown, 2 had a strong brown colour and another 2 had a light olive brown colour. Other soil colours were less common, as each colour was only observed in one sample. The sand fraction dominated the samples; the clay content was low, giving the samples a sandy clay loamy texture. The pH of the soil ranged from being slightly acidic (5.4) to being slightly alkaline. The CEC values were very high ranging from 17 t0 109 meq/100 g. vii The EC values were also high (ranging from 11.2 to 245 μS/cm) indicating a high amount of soluble salts. Mineralogical analysis of geophagic soils identified quartz, microcline, plagioclase, hornblende, dolomite, muscovite, kaolinite, smectite, talc, anatase, hematite, ilmenite, chlorite and epidote with quartz and kaolinite being the dominant minerals. Actinolite, augite, chlorite, epidote, forsterite, magnetite, muscovite, plagioclase, quartz, sepiolite and microcline were the minerals identified in rock samples. Geochemical analysis for major oxides content (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5 and Cr2O3) indicated that both geophagic soils and parent rocks were mainly composed of silica and alumina. Trace elements geochemistry showed a depletion of LREEs and an enrichment of HREEs in geophagic soils. The results also revealed that the REEs were enriched in the bulk fraction than in the clay fraction. Relative to the Upper Continental Crust (UCC) compositions, the concentrations of trace elements in geophagic soils were generally low. Provenance determination results showed that geophagic soils in Mashau were derived from basalts and sandstones. Majority of the samples were formed as a result of intense weathering while some were as a result of intermediate weathering. The negative health implications of the studied materials could include perforation of the colon, damage of the dental enamel and anaemia. However, geophagic materials could also be a good source of mineral nutrients and beneficial for reduction of nausea during pregnancy. / NRF
5

Tillage, soil texture and mineralogy effects on selected soil properties on four soil types in Limpopo Province, South Africa

Magagula, Siyabonga Isaac 21 June 2020 (has links)
MSCAGR (Soil Science) / Department of Soil Science / The effects of tillage on soil structure and associated soil properties such as soil respiration may differ in different soils. The study determined the effects of tillage, soil texture and mineralogy in selected soil properties on different soil types. Soil samples were collected from four different sites in the Limpopo province, South Africa. The soils were classified as Glenrosa with sandy loam texture, Dundee with loamy sand, Hutton with clay, and Shortlands with clay. Glenrosa and Dundee were dominated by quartz, while Hutton and Shortlands with kaolinite. Soil samples were taken from the surface 0 – 20 cm under conventional tillage and no-till land. Soil organic matter, texture, and mineralogy were determined. The soils were wetted to activate the microorganisms and incubated for 70 days at 30℃ and soil respiration was determined using alkali trap method on a weekly basis. The study was conducted in triplicates and arranged in a completely randomized design. Data was subjected to analysis of variance using general linear model procedure of Minitab version 19. Means were compared using paired t-test at (p ≤ 0.05). The Pearson correlation coefficient (r) was used to measure the strength of linear dependence between variables. There was a significant difference in soil organic matter (p≤0.000) among all studied soils. The mean values of soil organic matter were 2.19% in Hutton, 2.0% in Shortlands, 0.54% in Glenrosa, and 0.43% in Dundee. Quartz had a strong negative linear relationship (r = -0.66) with soil organic matter while kaolinite had a strong positive linear relationship (r = 0.96). Soil respiration increased in soils dominated with quartz and decreased in soils dominated with kaolinite. The soil respiration increased by 18.95 g CO2 m-2 d-1 in conventional tillage and decreased by 13.88 g CO2 m-2 d-1 in no-tillage due to increased exposure of soil organic matter under conventional. It was concluded that less intensive tillage such as no-tillage reduces soil respiration. / NRF

Page generated in 0.0988 seconds