• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Rolle der Nagetiere als Reservoire und Verbreiter der Pest

Erdmann, Georg Hans, January 1953 (has links)
Inaug. Diss.--Frankfurt am Main. / Lebenslauf. Bibliography: leaves xii-xx.
2

Genetic variation in two morphologically similar South African Mastomys species (Rodentia : Muridae)

Smit, Andre-Karl 07 September 2012 (has links)
M.A. / Two species of multimammate mouse, Mastomys coucha and M. natalensis are common, and widely distributed in southern Africa, occurring sympatrically in some areas, and allopatrically in others. The limits of their distribution are only provisional so far. As they share a high degree of morphological similarity, they are, as yet, impossible to identify with certainty in the field. Each species of multimammate mouse carries important diseases: with M. coucha being a carrier for the bacterium causing plague, and M. natalensis carrying the virus causing Lassa fever. In many areas, multimammate mice, being highly adaptable and ecological generalists, have become co-habitants with humans. This fact, coupled to the medical significance of both species, lends importance to being able to identify each species where it occurs, especially in areas where they occur sympatrically. Thus, a total of 40 specimens of M. natalensis were trapped from Richards Bay and La Lucia ridge in KwaZulu-Natal, and 43 specimens of M. coucha from Montgomery Park in Johannesburg and from the shores of the Vaal Dam in the Free State with the aim of comparing these two species via gel electrophoresis. These specimens were from allopatric populations from the centres of their provisional distributions. It was expected that there would be genetic differences between the two sibling species. Blood, liver, and muscle samples were taken, either in the field from dead specimens caught in snap-traps, or back in the laboratory from live-trapped specimens. Fifteen proteins or enzymes provided interpretable results at a total of 39 loci. Nineteen of these were polymorphic
3

Molecular identification and characterisation of rodent- and shrew-borne Hantaviruses

Ithete, Ndapewa Laudika 12 1900 (has links)
Thesis (MScMedSc (Pathology. Medical Virology))--University of Stellenbosch, 2010. / Bibliography / ENGLISH ABSTRACT: Throughout history disease entities have been described which match the description of diseases now known to be caused by hantaviruses; however these viruses were first identified as the aetiologic agent in 1976, the first species named Hantaan virus after the river near which its natural host, the rodent species Apodemus agrarius, was captured. Since then numerous species in the Hantavirus genus, family Bunyaviridae, have been found, with today more than 30 species worldwide being known. Hantaviruses are hosted by rodents from the Muridae and Cricetidae families and by shrews (insectivores) in the Soricidae family. There are two types of hantavirus disease, Haemorrhagic fever with renal syndrome (HFRS) in the Old World and Hantavirus cardiopulmonary syndrome (HCPS) in the New World. The first two African hantaviruses were identified in 2006 in Guinea, West Africa; Sangassou virus (SANGV) in a rodent, the African wood mouse (Hylomyscus simus), and Tanganya virus (TGNV) in Therese’s shrew (Crocidura theresae). In this study, rodents and shrews were trapped at localities in the Western Cape and Northern Cape provinces of South Africa, and in the southern regions of Namibia. RNA was extracted from their lungs and screened for hantavirus sequences by RTPCR, using degenerate primers designed to detect all members of the Hantavirus genus. In addition, an in-house IgG ELISA assay was set up, based on recombinant N antigen from Dobrava virus, DOB-rN, and Puumala virus, PUU-rN. The assay was used to screen patient sera collected in an anonymous convenience serological survey using residual serum samples left over from routine testing at NHLS laboratories in the Western Cape for hantavirus-specific antibodies. RNA from 576 animal specimens was screened by RT-PCR; no hantavirus genome was detected in any of the specimens. Sera from 161 patients were screened for hantavirus antibodies; 11.18% of the sera were reactive to DOB-rN, 4.97% against PUU-rN and 2.48% against both antigens. v Though no virus was detected in the animals screened, this does not necessarily mean that there are no hantaviruses present in Southern Africa. A previous seroepidemiological survey conducted in South Africa reported on the presence of hantavirus specific antibodies by IFA in two species of rodents trapped in the Western Cape and Northern Cape Aethomys namquensis and Tatera leucogaster. Our was the second known study in South Africa conducted that determined and proved the presence of hantavirus specific antibodies in humans. / AFRIKAANSE OPSOMMING: Dwarsdeur die geskiedenis was daar beskrywings van siektes wat ooreenstem met die beskrywing van hantavirus simptome, maar die eerste etiologiese oorsaak van die siekte is eers in 1976 geïdentifiseer en Hantaan virus genoem, vernoem na die rivier waar naby die gasheer, Apodemus agrarius, gevang is. Van daar af het die soektog na nuwe hantavirusse intensief gevorder en vandag is daar meer as 30 spesies wêreldwyd wat aan die Hantavirus genus, ’n lid van die Bunyaviridae familie, behoort. Knaagdiere van die Muridae en Cricetidae families, sowel as spitsmuise (insekvreters) in die Soricidae familie is gasheer vir hantavirusse. Twee tipes hantavirus siekte is bekend, hemorragische koors met nier sindroom (HFRS) in die Ou Wêreld en hantavirus kardiopulmonale sindroom in die Nuwe Wêreld. Die eerste twee Afrika hantavirusse is in 2006 in Guinee Wes-Afrika geïdentifiseer; Sangassou virus (SANGV) in ’n knaagdier, die Afrika hout muis (Hylomyscus simus) en Tanganya virus (TGNV) in Therese se spitsmuis (Crocidura theresae). In hierdie studie is knaagdiere en spitsmuise op verskeie plekke in die Wes- en Noord-Kaap provinsies, asook die Suide van Namibië, gevang. RNS is onttrek vanuit die longe en hantavirus volgordes is gesoek deur middel RT-PKR deur gebruik te maak van Pan-Hanta primers wat ontwerp is om alle lede van die Hantavirus genus op te spoor. ’n Self-ontwerpde IgG ELISA, gebasseer op rekombinante N antigeen van Dobrava virus, DOB-rN en Puumala virus, PUU rN, is opgestel en gebruik om pasiënt serum, verkry in ’n anonieme serologiese opname, te toets; oorblywende serum, na toetse uitgevoer is deur NHLS laboratoriums in die Wes-Kaap, is verkry en getoets vir hantavirus spesifieke teenliggaampies. RNS van 576 dier monsters is getoets deur middel van RT-PKR en geen hantavirus is in enige van die monsters geïdentifiseer nie. Serum van 161 pasiënte is getoets vir hantavirus teenliggaampies; 11.18% van die serum was reaktief teen DOB-rN, 4.97% teen PUU-rN en 2.48% teen albei antigene. Alhoewel geen virus in die diere geïdentifiseer is nie, beteken dit nie noodwendig dat geen hantavirusse in Suidelike-Afrika voorkom nie. ‘n Vorige sero-epidemiologiese opname wat in Suid-Afrika gedoen is het die teenwoordigheid van hantavirus spesifieke teenliggaampies in twee knaagdier spesies, Aethomys namquensis en Tatera leucogaster gevang in die Wes-en Noord-Kaap, gevind. Ons studie is die tweede studie bekend in Suid-Afrika uitgevoer, wat die teenwoordigheid van hantavirus spesifieke teenliggaampies bevind en bewys het.

Page generated in 0.1237 seconds