• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rolling tines – evaluation and simulation using discrete element method

Mak, Jay 31 August 2011 (has links)
The objectives of the study were to evaluate the soil disturbances and manure dispersion created by the AerWay aerator in a silt loam soil; and to generate a calibrated and validated soil-tool model using Discrete Element Methods (DEM) that simulate the draft and vertical forces of the aerator. The experimental results showed that a trend indicated that the faster tractor speeds would disturb more soil. After one hour with the manure application rate of 42 000 L/ha, manure was spread to a depth of 250 mm, 200 mm in the forward direction and 100 mm in the lateral direction. The model draft forces had a relative error of 13.4-31.2% when compared to the literature data between 100-150 mm depth while the predicted vertical force was found to linearly increase until 150 mm depth at around 700 N per rolling tine and plateaus until the full insertion of 200 mm.
2

Rolling tines – evaluation and simulation using discrete element method

Mak, Jay 31 August 2011 (has links)
The objectives of the study were to evaluate the soil disturbances and manure dispersion created by the AerWay aerator in a silt loam soil; and to generate a calibrated and validated soil-tool model using Discrete Element Methods (DEM) that simulate the draft and vertical forces of the aerator. The experimental results showed that a trend indicated that the faster tractor speeds would disturb more soil. After one hour with the manure application rate of 42 000 L/ha, manure was spread to a depth of 250 mm, 200 mm in the forward direction and 100 mm in the lateral direction. The model draft forces had a relative error of 13.4-31.2% when compared to the literature data between 100-150 mm depth while the predicted vertical force was found to linearly increase until 150 mm depth at around 700 N per rolling tine and plateaus until the full insertion of 200 mm.

Page generated in 0.0822 seconds