• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efecto escala en el modelamiento de roca intacta mediante elementos discretos

Luengo Cerda, Juan Bautista January 2014 (has links)
Ingeniero Civil de Minas / El efecto escala corresponde a una disminución de la resistencia y propiedades de deformación de la roca a medida que se incrementa el volumen del espécimen. Este efecto es causado por la mayor probabilidad de encontrar estructuras y defectos en la roca. Las principales técnicas de modelamiento numérico no incluyen este fenómeno en sus simulaciones, lo que motiva a investigar metodologías que permitan replicar tal efecto. El objetivo de esta memoria es evidenciar e inducir el efecto escala en modelos de elementos discretos. Para esto se dispone del software PFC3D Versión 4.00-182 (64 bit) para realizar ensayos de compresión uniaxial, tracción directa y compresión bajo confinamiento. Para la calibración del modelo de elementos discretos se utilizan los datos de ensayos de laboratorio de la roca Westerly Granite. La inducción del efecto escala se efectúa a través de dos metodologías: (i) liberación de vínculos entre partículas de manera aleatoria, (ii) modificación de micro-parámetros que definen al modelo. Se concluye que el modelo Bonded Particle Model utilizado por el software PFC3D permite replicar la resistencia y propiedades de deformación de la roca estudiada, exceptuando el comportamiento post-peak. Con respecto al efecto escala, éste no viene incorporado, por lo que la implementación se realiza con las metodologías descritas anteriormente. La liberación de vínculos produce disminución en la resistencia UCS pero no genera los mismos efectos para otros sets de micro-parámetros, necesitando en algunos casos liberar más del 100% de los vínculos para replicar la ley de escalamiento de Hoek & Brown. La modificación de micro-parámetros permite replicar la ley de escalamiento para cualquier set de microparámetros, utilizando como inputs el diámetro equivalente y resistencia a la compresión uniaxial de una probeta de 50 cm de diámetro de la roca en estudio. Este trabajo permite progresar en la implementación del efecto escala en PFC3D para roca intacta y podría ser el inicio para la implementación en la técnica Synthetic Rock Mass (SRM) de este efecto, con el fin de obtener resistencias distintas para los bloques que conforman un macizo rocosos en función de sus tamaño. Es necesario estudiar el modo de traspasar el código utilizado en PFC3D a la técnica SRM, e identificar las ventajas, desventajas y las posibles limitaciones de la metodología propuesta.
2

Rolling tines – evaluation and simulation using discrete element method

Mak, Jay 31 August 2011 (has links)
The objectives of the study were to evaluate the soil disturbances and manure dispersion created by the AerWay aerator in a silt loam soil; and to generate a calibrated and validated soil-tool model using Discrete Element Methods (DEM) that simulate the draft and vertical forces of the aerator. The experimental results showed that a trend indicated that the faster tractor speeds would disturb more soil. After one hour with the manure application rate of 42 000 L/ha, manure was spread to a depth of 250 mm, 200 mm in the forward direction and 100 mm in the lateral direction. The model draft forces had a relative error of 13.4-31.2% when compared to the literature data between 100-150 mm depth while the predicted vertical force was found to linearly increase until 150 mm depth at around 700 N per rolling tine and plateaus until the full insertion of 200 mm.
3

Rolling tines – evaluation and simulation using discrete element method

Mak, Jay 31 August 2011 (has links)
The objectives of the study were to evaluate the soil disturbances and manure dispersion created by the AerWay aerator in a silt loam soil; and to generate a calibrated and validated soil-tool model using Discrete Element Methods (DEM) that simulate the draft and vertical forces of the aerator. The experimental results showed that a trend indicated that the faster tractor speeds would disturb more soil. After one hour with the manure application rate of 42 000 L/ha, manure was spread to a depth of 250 mm, 200 mm in the forward direction and 100 mm in the lateral direction. The model draft forces had a relative error of 13.4-31.2% when compared to the literature data between 100-150 mm depth while the predicted vertical force was found to linearly increase until 150 mm depth at around 700 N per rolling tine and plateaus until the full insertion of 200 mm.
4

The Simulation and Analysis of Particle Flow Through an Aggregate Stockpile

Parker, Brian Mark 17 December 2009 (has links)
For many aggregate mining facilities, the stockpile is the preferred method of storing rock. In many aggregate mines, as well as other mines using stockpiling techniques, understanding the timing and flow of particles through a stockpile is important for correctly timing samples, making proper process adjustments and overall stockpile safety. Because much of the research of today lacks important information regarding actual interior particle movement within a stockpile, a series of Real Time Distribution (RTD) analyses and stockpile flow models have been prepared and analyzed for this study in order to better understand the flow characteristics of a stockpile. A series of three RTD analyses performed on three separate stockpiles provides information leading to the assumption that stockpiles tend to operate similar to a plug flow system. While conveyor loading techniques may lead to separation of rocks prior to traveling through the stockpile, the majority of the rock particles entering the pile remain near the point of entry, or within the "action" area, and will travel through the pile in a plug flow, rather than a mixed flow, manner. High Peclet number results for each analysis prove this assumption to be accurate. A series of models on three separate stockpiles have been created using PFC3d. Mainly, the simulations prove PFC3d is capable of showing how stockpile particles move in three dimensions while monitoring specific particles within the pile. In addition, these models provide simulation results similar to the results obtained within the RTD analyses. Results show that particles located directly above the discharge point, or "action" area, travel through the pile at a faster rate than particles surrounding this area. Velocity results obtained from the simulations show particles accelerating as they get closer to the discharge points while also providing evidence of "arching" during the simulation process. These findings provide a better understanding of internal flow within the stockpile and ways to possibly predict future stockpile flow issues that may be encountered. / Master of Science
5

Simulation von gesteinsmechanischen Bohr- und Schneidprozessen mittels der Diskreten - Elemente - Methode

Lunow, Christian 13 November 2015 (has links) (PDF)
Mit dem zweidimensionalen numerischen Diskrete-Elemente-Programm UDEC wurde nach vorheriger Kalibrierung das Einstanzen einer keilförmigen Schneide in Gesteinsmaterial simuliert und mit Laborversuchen verglichen. Außerdem wurde ein Schneidprozess simuliert. Mittels einer selbst entwickelten Routine, welche die Gesteinselemente bei Überlastung zerteilt und ein ‚Re-meshing‘ erzeugt, konnten befriedigende Simulationsergebnisse erzielt werden. Mit der dreidimensionalen Simulationssoftware PFC3D auf Partikelbasis wurden Modelle mit Hilfe von Zug-, Druck-, Scher- und Stanzversuchen kalibriert und anschließend Schneid- und Bohrversuche simuliert. Die Schneidsimulationen erbrachten bezüglich der Kräfte bei verschiedenen Prozessparametern gute Übereinstimmung mit den Laborversuchen. Bei der Bohrsimulationen konnten Kräfte und Momente aus den Laborversuchen nur teilweise reproduziert werden.
6

Modellierung der Formstoffströme beim Vollformgießen

Kotov, Roman 24 July 2009 (has links) (PDF)
Im Rahmen dieser Arbeit wurde mit Hilfe von Distinct Element Methode und PFC3D-Programm eine 3D-Modellierung der Formstoffströme bei der Formherstellung, indem es zur Sandverdichtung unter der Vibrationseinwirkung kommt, für das Vollformgießen durchgeführt. Hierfür wurden die Fließeigenschaften des trockenen binderfreien Sandes überprüft, mit PFC3D modelliert und eine gute Übereinstimmung zwischen dem realen Sand und dem modellierten Stoff erreicht. Dadurch war es möglich, diese Modellierung für die Untersuchungen des Sandverhaltens unter Vibration zu verwenden und die Sandströmungen im Formbehälter zu beobachten. Die theoretischen Ergebnisse des Simulationsprozesses haben gezeigt, dass die durchgeführte Modellierung nicht nur die Auswahl der optimalen Vibrationsparameter bei der Formherstellung für das Vollformgießen, sondern auch die allgemeine Anwendung des mathematischen Modells für den trockenen binderfreien Sand möglich macht.
7

Modellierung der Formstoffströme beim Vollformgießen

Kotov, Roman 29 August 2008 (has links)
Im Rahmen dieser Arbeit wurde mit Hilfe von Distinct Element Methode und PFC3D-Programm eine 3D-Modellierung der Formstoffströme bei der Formherstellung, indem es zur Sandverdichtung unter der Vibrationseinwirkung kommt, für das Vollformgießen durchgeführt. Hierfür wurden die Fließeigenschaften des trockenen binderfreien Sandes überprüft, mit PFC3D modelliert und eine gute Übereinstimmung zwischen dem realen Sand und dem modellierten Stoff erreicht. Dadurch war es möglich, diese Modellierung für die Untersuchungen des Sandverhaltens unter Vibration zu verwenden und die Sandströmungen im Formbehälter zu beobachten. Die theoretischen Ergebnisse des Simulationsprozesses haben gezeigt, dass die durchgeführte Modellierung nicht nur die Auswahl der optimalen Vibrationsparameter bei der Formherstellung für das Vollformgießen, sondern auch die allgemeine Anwendung des mathematischen Modells für den trockenen binderfreien Sand möglich macht.
8

Simulation von gesteinsmechanischen Bohr- und Schneidprozessen mittels der Diskreten - Elemente - Methode

Lunow, Christian 01 December 2014 (has links)
Mit dem zweidimensionalen numerischen Diskrete-Elemente-Programm UDEC wurde nach vorheriger Kalibrierung das Einstanzen einer keilförmigen Schneide in Gesteinsmaterial simuliert und mit Laborversuchen verglichen. Außerdem wurde ein Schneidprozess simuliert. Mittels einer selbst entwickelten Routine, welche die Gesteinselemente bei Überlastung zerteilt und ein ‚Re-meshing‘ erzeugt, konnten befriedigende Simulationsergebnisse erzielt werden. Mit der dreidimensionalen Simulationssoftware PFC3D auf Partikelbasis wurden Modelle mit Hilfe von Zug-, Druck-, Scher- und Stanzversuchen kalibriert und anschließend Schneid- und Bohrversuche simuliert. Die Schneidsimulationen erbrachten bezüglich der Kräfte bei verschiedenen Prozessparametern gute Übereinstimmung mit den Laborversuchen. Bei der Bohrsimulationen konnten Kräfte und Momente aus den Laborversuchen nur teilweise reproduziert werden.:1 Einleitung.................................................................................................... 1 2 Grundlagen der Gesteinszerstörung .......................................................... 3 2.1 Die mechanische Gesteinszerstörung beeinflussende Faktoren................ 3 2.2 Bohrwerkzeuge .......................................................................................... 8 2.2.1 Anforderungen an Bohrwerkzeuge ...................................................... 8 2.2.2 Rollenbohrwerkzeuge .......................................................................... 9 2.2.3 Diamantbohrwerkzeuge....................................................................... 9 2.2.4 Hartmetallwerkzeuge ......................................................................... 11 2.2.5 Auswahl und Einsatz des Bohrmeißels.............................................. 12 2.3 Gestaltung des Bohrprozesses ................................................................ 13 2.4 Vergleich zwischen schneidender, drückender und schlagender Gesteinszerstörung .................................................................................. 14 2.5 Schneidende Gesteinszerstörung ............................................................ 15 2.5.1 Zerspankraft und deren Komponenten: ............................................. 15 2.5.2 Steinbearbeitung mit geometrisch unbestimmter Schneide............... 17 2.5.3 Steinbearbeitung mit geometrisch bestimmter Schneide................... 18 2.6 Drückende Gesteinszerstörung ................................................................ 27 2.7 Verschleiß ................................................................................................ 28 3 Stand der Technik .................................................................................... 31 3.1 Rollenmeißel ............................................................................................ 31 3.1.1 Experimentelle Untersuchungen........................................................ 31 3.1.2 Simulation der Rollenmeißel.............................................................. 34 3.2 Simulation von mechanischen Zerkleinerungsprozessen......................... 40 4 Zweidimensionale Simulation der Gesteinszerstörung mit UDEC ............ 71 4.1 Vorstellung UDEC .................................................................................... 71 4.2 Simulation eines Stanzversuchs mit Diskenmeißeln ................................ 73 4.2.1 Modellaufbau, Methodik..................................................................... 73 4.2.2 Kalibrierung des Gesteinsmodells ..................................................... 73 4.2.3 Simulation der Stanzversuche ........................................................... 74 4.3 Simulation von Schneidversuchen ........................................................... 83 4.3.1 Kalibrierung des Gesteinsmodells ..................................................... 83 4.3.2 Simulation der Schneidversuche ....................................................... 85 5 Dreidimensionale Simulation der Gesteinszerstörung mit PFC3D ............. 97 5.1 Vorstellung PFC3D .................................................................................... 97 5.2 Methodik der Parameterkalibrierung......................................................... 98 5.3 Kalibrierung an Postaer Sandstein ......................................................... 100 5.3.1 Verwendete Rechenmodelle............................................................ 100 5.3.2 Kalibrierung an einaxialen Duck- und Zugversuchen....................... 102 5.3.3 Kalibrierung an Scherversuchen...................................................... 113 5.3.4 Kalibrierung an Stanzversuchen...................................................... 120 5.3.5 Schlussfolgerungen aus der Kalibrierung ........................................ 124 5.4 Simulation von Schneidversuchen ......................................................... 124 5.4.1 Laborversuche................................................................................. 124 5.4.2 Simulationen mit fünffachem Partikeldurchmesser.......................... 128 5.4.3 Simulation mit der Originalkorngröße .............................................. 133 5.4.4 Zusammenfassung .......................................................................... 149 5.5 Simulation der Bohrversuche ................................................................. 149 5.5.1 Versuchsstand................................................................................. 149 5.5.2 Berechnung von Kräften und Momenten ......................................... 151 II 5.5.3 Vergleich verschiedener Rechenmodelle ........................................ 152 5.5.4 Vergleich der Simulation des Bohrversuches mit dem Schneidversuch.............................................................................. 163 5.5.5 Betrachtungen zu den einzelnen Schneidplatten............................. 165 5.5.6 Zusammenfassung .......................................................................... 168 6 Zusammenfassung..................................................................................169 6.1 Hauptbeiträge......................................................................................... 171 7 Extended Summary.................................................................................173 7.1 Two-dimensional simulation of the rock destruction with UDEC............. 173 7.1.1 Introduction...................................................................................... 173 7.1.2 Simulation of a stamping experiment with disc cutters .................... 173 7.1.3 Simulation of rock cutting experiments ............................................ 174 7.2 Three dimensional simulation of the rock destruction with PFC3D .......... 177 7.2.1 Introduction...................................................................................... 177 7.2.2 Calibration ....................................................................................... 177 7.2.3 Simulation of cutting experiments.................................................... 178 7.2.4 Simulation of drilling experiments .................................................... 182 8 Literatur ...................................................................................................187

Page generated in 0.016 seconds