• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perfect Italian Domination in Trees

Haynes, Teresa W., Henning, Michael A. 15 May 2019 (has links)
A perfect Italian dominating function on a graph G is a function f:V(G)→{0,1,2} satisfying the condition that for every vertex u with f(u)=0, the total weight of f assigned to the neighbors of u is exactly two. The weight of a perfect Italian dominating function is the sum of the weights of the vertices. The perfect Italian domination number of G, denoted γ Ip (G), is the minimum weight of a perfect Italian dominating function of G. We show that if G is a tree on n≥3 vertices, then γ Ip (G)≤[Formula presented]n, and for each positive integer n≡0(mod5) there exists a tree of order n for which equality holds in the bound.
2

Roman {2}-Domination

Chellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T., McRae, Alice A. 11 May 2016 (has links)
In this paper, we initiate the study of a variant of Roman dominating functions. For a graph G=(V,E), a Roman {2}-dominating function f:V→{0,1,2} has the property that for every vertex v∈V with f(v)=0, either v is adjacent to a vertex assigned 2 under f, or v is adjacent to least two vertices assigned 1 under f. The weight of a Roman {2}-dominating function is the sum Σv∈Vf(v), and the minimum weight of a Roman {2}-dominating function f is the Roman {2}-domination number. First, we present bounds relating the Roman {2}-domination number to some other domination parameters. In particular, we show that the Roman {2}-domination number is bounded above by the 2-rainbow domination number. Moreover, we prove that equality between these two parameters holds for trees and cactus graphs with no even cycles. Finally, we show that associated decision problem for Roman {2}-domination is NP-complete, even for bipartite graphs.
3

Graphs with Large Italian Domination Number

Haynes, Teresa W., Henning, Michael A., Volkmann, Lutz 01 November 2020 (has links)
An Italian dominating function on a graph G with vertex set V(G) is a function f: V(G) → { 0 , 1 , 2 } having the property that for every vertex v with f(v) = 0 , at least two neighbors of v are assigned 1 under f or at least one neighbor of v is assigned 2 under f. The weight of an Italian dominating function f is the sum of the values assigned to all the vertices under f. The Italian domination number of G, denoted by γI(G) , is the minimum weight of an Italian dominating of G. It is known that if G is a connected graph of order n≥ 3 , then γI(G)≤34n. Further, if G has minimum degree at least 2, then γI(G)≤23n. In this paper, we characterize the connected graphs achieving equality in these bounds. In addition, we prove Nordhaus–Gaddum inequalities for the Italian domination number.
4

Italian Domination in Complementary Prisms

Russell, Haley D 01 May 2018 (has links) (PDF)
Let $G$ be any graph and let $\overline{G}$ be its complement. The complementary prism of $G$ is formed from the disjoint union of a graph $G$ and its complement $\overline{G}$ by adding the edges of a perfect matching between the corresponding vertices of $G$ and $\overline{G}$. An Italian dominating function on a graph $G$ is a function such that $f \, : \, V \to \{ 0,1,2 \}$ and for each vertex $v \in V$ for which $f(v)=0$, it holds that $\sum_{u \in N(v)} f(u) \geq 2$. The weight of an Italian dominating function is the value $f(V)=\sum_{u \in V(G)}f(u)$. The minimum weight of all such functions on $G$ is called the Italian domination number. In this thesis we will study Italian domination in complementary prisms. First we will present an error found in one of the references. Then we will define the small values of the Italian domination in complementary prisms, find the value of the Italian domination number in specific families of graphs complementary prisms, and conclude with future problems.

Page generated in 0.0831 seconds