• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Immeubles affines et groupes de Kac-Moody / Affine buildings and Kac-Moody groups

Charignon, Cyril 02 July 2010 (has links)
Le but de ce travail est d’étendre la théorie de Bruhat-Tits au cas des groupes de Kac-Moody sur des corps locaux. Il s’agit donc de définir un espace géométrique sur lequel un tel groupe agit, semblable à l’immeuble de Bruhat-Tits d’un groupe réductif. En fait, la première partie reste dans le cadre de la théorie de Bruhat-Tits puisqu’on y définit une famille de compactification des immeubles affines. C’est dans la seconde partie qu’en s’inspirant de la construction de la première, on aborde le cas des groupes de Kac-Moody. Les espaces obtenus ne vérifient pas toutes les conditions demandées à un immeuble, ils sont donc appelés des masures (bordées). / This work aims at generalizing Bruhat-Tits theory to Kac-Moody groups over local fields. We thus try to construct a geometric space on wich such a group will act, and wich will look like the Bruhat-Tits building of a reductive group. Actually, the first part stays in the field of Bruhat-Tits theory as it exposes a family of compactification of an ordinary affine building. It is in the second part that we move to Kac-Moody theory, using the first part as a guide. The spaces obtained do not satisfy all the requirement for a building,they will be called (bounded) hovels (”masures” in french).

Page generated in 0.0322 seconds