• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 11
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 21
  • 12
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automorphisms and twisted vertex operators

Myhill, Richard Graham January 1987 (has links)
This work is an examination of various aspects of twisted vertex operator representations of Kac-Moody algebras. It starts with an introduction to Kac-Moody algebras and string theories, including a discussion of the propagation of strings on orbifolds. String interactions in a subclass of such models naturally involve twisted vertex operators. The centrally extended loop algebra realization of Kac-Moody algebras is used to explain why the inequivalent gradations of basic representations of Kac-Moody algebras g(^r) associated with g are in one-to-one correspondence with the conjugacy classes of the automorphism group of the root system, aut Ф(_g).The structure of the automorphism groups of the simple Lie algebra root systems are examined. A method of classifying the conjugacy classes of the Weyl groups is explained and then extended to cover the whole automorphism group in cases where there are additional Dynkin diagram symmetries. All possible automorphisms, a, that have the property that det (1 – σ(^r)) ≠ 0, r = 1, ….. , n - 1 where n is the order of a, are determined. Such automorphisms lead to interesting orbifold models in which some of the calculations are simplified. A thorough exposition of the twisted vertex operator representation is given including a detailed explanation of the zero-mode Hilbert space and the construction of the required cocycle operators. The relation of the vacuum degeneracy to the number of fixed subspace singularities in the orbifold construction is discussed. Explicit examples of twisted vertex operators and their associated cocycles are given. Finally it is shown how the twisted and an alternative shifted vertex operator representation of the same gradation may be identified. This is used to determine the invariant subalgebras of the gradations along with the vacuum degeneracies and conformal weights of the representations. The results of calculations for inequivalent gradations of the simply laced exceptional algebras are given.
2

Zentren deformierter Darstellungskategorien und Verschiebungsfunktoren

Fiebig, Peter. January 2001 (has links) (PDF)
Freiburg (Breisgau), Universiẗat, Diss., 2001.
3

Involutive automorphisms and real forms of Kac-Moody algebras

Clarke, Stefan January 1996 (has links)
Involutive automorphisms of complex affine Kac-Moody algebras (in particular, their conjugacy classes within the group of all automorphisms) and their compact real forms are studied, using the matrix formulation which was developed by Cornwell. The initial study of the a(1) series of affine untwisted Kac-Moody algebras is extended to include the complex affine untwisted Kac-Moody algebras B(1), C(1) and D(1). From the information obtained, explicit bases for real forms of these Kac-Moody algebras are then constructed. A scheme for naming some real forms is suggested. Further work is included which examines the involutive automorphisms and the real forms of A2(2)and the algebra G(1)2 (which is based upon an exceptional simple Lie algebra). The work involving the algebra A2(2)is part of work towards extending the matrix formulation to twisted Kac-Moody algebras. The analysis also acts as a practical test of this method, and from it we may infer different ways of using the formulation to eventually obtain a complete picture of the conjugacy classes of the involutive automorphisms of all the affine Kac-Moody algebras.
4

Kac-Moody algebraic structures in supergravity theories/ Les algèbres de Kac-Moody dans les théories de supergravité

Tabti, Nassiba 22 September 2009 (has links)
A lot of developments made during the last years show that Kac-Moody algebras play an important role in the algebraic structure of some supergravity theories. These algebras would generate infinite-dimensional symmetry groups. The possible existence of such symmetries have motivated the reformulation of these theories as non-linear sigma-models based on the Kac-Moody symmetry groups. Such models are constructed in terms of an infinite number of fields parametrizing the generators of the corresponding algebra. If these conjectured symmetries are indeed actual symmetries of certain supergravity theories, a meaningful question to elucidate will be the interpretation of this infinite tower of fields. Another substantial problem is to find the correspondence between the sigma-models, which are explicitly invariant under the conjectured symmetries, and these corresponding space-time theories. The subject of this thesis is to address these questions in certain cases. This dissertation is divided in three parts. In Part I, we first review the mathematical background on Kac-Moody algebras required to understand the results of this thesis. We then describe the investigations of the underlying symmetry structure of supergravity theories. In Part II, we focus on the bosonic sector of eleven-dimensional supergravity which would be invariant under the extended symmetry E_{11}. We study its subalgebra E_{10} and more precisely the real roots of its affine subalgebra E_9. For each positive real roots of E_9 we obtain a BPS solution of eleven-dimensional supergravity or of its exotic counterparts. All these solutions are related by U-dualities which are realized via E_9 Weyl transformations. In Part III, we study the symmetries of pure N=2 supergravity in D=4. As is known, the dimensional reduction of this model with one Killing vector is characterized by a non-linearly realized symmetry SU(2,1). We consider the BPS brane solutions of this theory preserving half of the supersymmetry and the action of SU(2,1) on them. Infinite-dimensional symmetries are also studied and we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Mody group SU(2,1)^{+++}. This evidence arises from the correspondence between the bosonic space-time fields of N=2 supergravity in D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++}. It also follows from the structure of BPS brane solutions which is neatly encoded in SU(2,1)^{+++}. As a worthy by-product of our analysis, we obtain a regular embedding of su(2,1)^{+++} in E_{11} based on brane physics./ Nombreuses sont les recherches récentes indiquant que différentes théories de gravité couplée à un certain type de champs de matière pourraient être caractérisées par des algèbres de Kac-Moody. Celles-ci généreraient des symétries infinies-dimensionnelles. L'existence possible de ces symétries a motivé la reformulation de ces théories par des actions explicitement invariantes sous les transformations du groupe de Kac-Moody. Ces actions sont construites en termes d'une infinité de champs associés à l'infinité de générateurs de l'algèbre correspondante. Si la conjecture de ces symétries est exacte, qu'en est-il de l'interprétation de l'infinité de champs? Qu'en est-il d'autre part de la correspondance entre ces actions explicitement invariantes sous les groupes de Kac-Moody et les théories d'espace-temps correspondantes? C'est autour de ces questions que gravite cette thèse. Nous nous sommes d'abord focalisés sur le secteur bosonique de la supergravité à 11 dimensions qui possèderait selon diverses études une symétrie étendue E_{11}. Nous avons étudié la sous-algèbre E_{10} et plus particulièrement les racines réelles de sa sous-algèbre affine E_9. Pour chacune de ces racines, nous avons obtenu une solution BPS de la supergravité à 11 dimensions dépendant de deux dimensions d'espace non-compactes. Cette infinité de solutions résulte de transformations de Weyl successives sur des champs dont l'interprétation physique d'espace-temps était connue. Nous avons ensuite analysé les symétries de la supergravité N=2 à 4 dimensions dont le secteur bosonique contient la gravité couplée à un champ de Maxwell. Cette théorie réduite sur un vecteur de Killing est caractérisée par la symétrie SU(2,1). Nous avons considéré les solutions de brane BPS qui préservent la moitié des supersymétries ainsi que l'action du groupe SU(2,1) sur ces solutions. Les symétries infinies-dimensionnelles ont également été étudiées. D'une part, la correspondance entre les champs d'espace-temps de la théorie N=2 et le modèle sigma basé sur le groupe hyperbolique SU(2,1)^{++} est établie. D'autre part, on montre que la structure des solutions de brane BPS est bien encodée dans SU(2,1)^{+++}. Ces considérations argumentent le fait que la supergravité N=2 possèderait une structure algébrique décrite par le groupe de Kac-Moody Lorentzien SU(2,1)^{+++}.
5

Estrutura algébrica dos modelos integráveis

França, G. S [UNESP] 16 April 2007 (has links) (PDF)
Made available in DSpace on 2016-05-17T16:50:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-04-16. Added 1 bitstream(s) on 2016-05-17T16:54:21Z : No. of bitstreams: 1 000855807.pdf: 420265 bytes, checksum: 0d551ee445aae9709b18c8ce3eed7d19 (MD5) / A estrutura das álgebras de Kac-Moody e suas representações constituem o ingrediente básico para a construção de hierarquias integráveis e de suas respectivas soluções solitônicas (obtidas através do método de dressing). Diversos modelos contidos nas hierarquias mKdVeAKNS são discutidos em detalhe e uma nova classe de equações integráveis, correspondente a graus negativos pares da hierarquia mKdV, é proposta. Diferentes soluções e operadores de recursão são construídos para ambas as hierarquias / The structure of Kac-Moody algebras and its representations constitute a basic ingredient for the construction of integrable hierarchies and its soliton solutions (obtained from the dressing method). Several models within the mKdV and KNS hierarchies are discussed in detail and some new integrable equations, corresponding to negative even grades of the mKdV hierarchy, are proposed. Different solutions and recursion operators are constructed for both hierarchies
6

Estrutura algébrica dos modelos integráveis /

França, Guilherme Starvaggi. January 2007 (has links)
Orientador: José Francisco Gomes / Banca: Paulo Teotônio Sobrinho / Banca: Clisthenis Ponce Constantinidis / Resumo: A estrutura das álgebras de Kac-Moody e suas representações constituem o ingrediente básico para a construção de hierarquias integráveis e de suas respectivas soluções solitônicas (obtidas através do método de dressing). Diversos modelos contidos nas hierarquias mKdVeAKNS são discutidos em detalhe e uma nova classe de equações integráveis, correspondente a graus negativos pares da hierarquia mKdV, é proposta. Diferentes soluções e operadores de recursão são construídos para ambas as hierarquias / Abstract: The structure of Kac-Moody algebras and its representations constitute a basic ingredient for the construction of integrable hierarchies and its soliton solutions (obtained from the dressing method). Several models within the mKdV and KNS hierarchies are discussed in detail and some new integrable equations, corresponding to negative even grades of the mKdV hierarchy, are proposed. Different solutions and recursion operators are constructed for both hierarchies / Mestre
7

Opérateurs et polynômes de Demazure pour les algèbres de Kac-Moody finies et affines

Verneyre-Petitgirard, Séverine Mathieu, Olivier January 2004 (has links) (PDF)
Reproduction de : Thèse de doctorat : Mathématiques : Lyon 1 : 2004. / Titre provenant de l'écran titre. 33 réf. bibliogr. Index.
8

Soluções sóliton do modelo de Toda su(3) afim acoplado a campos de matéria /

Bueno, André Gimenez. January 2001 (has links)
Orientador: Luiz Agostinho Ferreira / Banca: Jose Eduardo Martinho Hornos / Banca: Abraham Hirsz Zimerman / Resumo: Nesta dissertação calculamos as soluções de um e dois sólitons modelo de Toda com álgebra de Kac-Moody afim su(3) acoplado a campos de matéria assim como o time delay para o caso 2-sóliton. As soluções são obtidas a partir de uma combinação dos métodos de dressing e Hirota. Há ao todo quatro campos escalares e seis espinores de Dirac. Nós mostramos que, após uma redução Hamiltoniana, a corrente topológica (envolvendo somente escalares) é proporcional à corrente de Nöther U(1) (envolvendo somente espinores) e isso conduz a um confinamento dos espinores dentro dos sólitons / Abstract: We calculate the one and two soliton solutions for the Toda model coupled to matter fields in the case of an affine su(3) Kac-Moody algebra, as well as the time delay in the 2-soliton case. The Solutions are obtained using a combination of the dressing and Hirota methods. There are altogether four scalar fields and six Dirac spinors. We show that, after a Hamiltonian reduction, the topological current (involving scalars only) is, up to a non-vanishing factor, equal to the U(1) Nöther current (involving the spinors only) and this leads to a confinement of the spinors inside the solitons / Mestre
9

Kac-Moody algebraic structures in supergravity theories / Algèbres de Kac-Moody dans les théories de supergravité

Tabti, Nassiba 22 September 2009 (has links)
A lot of developments made during the last years show that Kac-Moody algebras play an important role in the algebraic structure of some supergravity theories. These algebras would generate infinite-dimensional symmetry groups. The possible existence of such symmetries have motivated the reformulation of these theories as non-linear sigma-models based on the Kac-Moody symmetry groups. Such models are constructed in terms of an infinite number of fields parametrizing the generators of the corresponding algebra. If these conjectured symmetries are indeed actual symmetries of certain supergravity theories, a meaningful question to elucidate will be the interpretation of this infinite tower of fields. Another substantial problem is to find the correspondence between the sigma-models, which are explicitly invariant under the conjectured symmetries, and these corresponding space-time theories. The subject of this thesis is to address these questions in certain cases. <p> <p> This dissertation is divided in three parts.<p> <p> In Part I, we first review the mathematical background on Kac-Moody algebras required to understand the results of this thesis. We then describe the investigations of the underlying symmetry structure of supergravity theories.<p> <p> In Part II, we focus on the bosonic sector of eleven-dimensional supergravity which would be invariant under the extended symmetry E_{11}. We study its subalgebra E_{10} and more precisely the real roots of its affine subalgebra E_9. For each positive real roots of E_9 we obtain a BPS solution of eleven-dimensional supergravity or of its exotic counterparts. All these solutions are related by U-dualities which are realized via E_9 Weyl transformations.<p> <p> In Part III, we study the symmetries of pure N=2 supergravity in D=4. As is known, the dimensional reduction of this model with one Killing vector is characterized by a non-linearly realized symmetry SU(2,1). We consider the BPS brane solutions of this theory preserving half of the supersymmetry and the action of SU(2,1) on them. Infinite-dimensional symmetries are also studied and we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Mody group SU(2,1)^{+++}. This evidence arises from the correspondence between the bosonic space-time fields of N=2 supergravity in D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++}. It also follows from the structure of BPS brane solutions which is neatly encoded in SU(2,1)^{+++}. As a worthy by-product of our analysis, we obtain a regular embedding of su(2,1)^{+++} in E_{11} based on brane physics./<p><p> Nombreuses sont les recherches récentes indiquant que différentes théories de gravité couplée à un certain type de champs de matière pourraient être caractérisées par des algèbres de Kac-Moody. Celles-ci généreraient des symétries infinies-dimensionnelles. L'existence possible de ces symétries a motivé la reformulation de ces théories par des actions explicitement invariantes sous les transformations du groupe de Kac-Moody. Ces actions sont construites en termes d'une infinité de champs associés à l'infinité de générateurs de l'algèbre correspondante. Si la conjecture de ces symétries est exacte, qu'en est-il de l'interprétation de l'infinité de champs? Qu'en est-il d'autre part de la correspondance entre ces actions explicitement invariantes sous les groupes de Kac-Moody et les théories d'espace-temps correspondantes? C'est autour de ces questions que gravite cette thèse.<p><p><p>Nous nous sommes d'abord focalisés sur le secteur bosonique de la supergravité à 11 dimensions qui possèderait selon diverses études une symétrie étendue E_{11}. Nous avons étudié la sous-algèbre E_{10} et plus particulièrement les racines réelles de sa sous-algèbre affine E_9. Pour chacune de ces racines, nous avons obtenu une solution BPS de la supergravité à 11 dimensions dépendant de deux dimensions d'espace non-compactes. Cette infinité de solutions résulte de transformations de Weyl successives sur des champs dont l'interprétation physique d'espace-temps était connue. <p><p>Nous avons ensuite analysé les symétries de la supergravité N=2 à 4 dimensions dont le secteur bosonique contient la gravité couplée à un champ de Maxwell. Cette théorie réduite sur un vecteur de Killing est caractérisée par la symétrie SU(2,1). Nous avons considéré les solutions de brane BPS qui préservent la moitié des supersymétries ainsi que l'action du groupe SU(2,1) sur ces solutions. Les symétries infinies-dimensionnelles ont également été étudiées. D'une part, la correspondance entre les champs d'espace-temps de la théorie N=2 et le modèle sigma basé sur le groupe hyperbolique SU(2,1)^{++} est établie. D'autre part, on montre que la structure des solutions de brane BPS est bien encodée dans SU(2,1)^{+++}. Ces considérations argumentent le fait que la supergravité N=2 possèderait une structure algébrique décrite par le groupe de Kac-Moody Lorentzien SU(2,1)^{+++}.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
10

Υπερβολικές άλγεβρες και κοσμολογία

Λυμπέρης, Ανδρέας 04 August 2009 (has links)
Τα δυναμικά βαρυτικών συστημάτων μπορούν να περιγραφούν ασυμπτωτικά στη γειτονιά μιας χωρικής ανωμαλίας σαν μια κίνηση μπιλιάρδου στον υπερβολικό χώρο.Η περιγραφή αυτή μπορεί να πραγματοποιηθεί με άλγεβρες Kac-Moody λαμβάνοντας σαν σύστημα ένα σ-μοντέλο. / The dynamics of some models in Gravity can be described as a billiard motion in the vicinity of a spacelike singularity in hyperbolic space. This description is equivalent in terms of a sigma model and can be described by some hyperbolic Kac-Moody algebras

Page generated in 0.0275 seconds