• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 11
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 21
  • 12
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Jantzen-Shapovalov form and Cartan invariants of symmetric groups and Hecke algebras /

Hill, David Edward, January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 107-108). Also available for download via the World Wide Web; free to University of Oregon users.
32

Kazhdan-Lusztig-Basen, unzerlegbare Bimoduln und die Topologie der Fahnenmannigfaltigkeit einer Kac-Moody-Gruppe

Härterich, Martin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Freiburg.
33

Estrutura algébrica de hierarquias integráveis e problemas de valor de contorno /

França, Guilherme Starvaggi. January 2011 (has links)
Orientador: José Francisco Gomes / Coorientador: Abraham Hirsz Zimerman / Banca: A. Lima Santos / Banca: A. Foekster / Banca: Paulo Afonso Faria da Veiga / Banca: P. Teotônio Sobrinho / Resumo: Nesta tese abordamos dois problemas. O primeiro trata-se do problema de condição de contorno para hierarquias integráveis. Através do método de dressing, que foi utilizado com êxito para construir soluções do tipo sóliton com condição de contorno nula, propomos uma abordagem geral para resolver o problema com condição de contorno não nula, onde o vácuo possui uma configuração de campos não trivial. Aplicamos então este método, para as hierarquias mKdV e AKNS com condição de contorno constante. Introduzimos operadores de vértice que incorporam a condição de contorno do problema, generalizando os operadores de vértice utilizados anteriormente. Quando o vácuo tende a zero, recuperamos os resultados conhecidos com condição de contorno nula. Soluções interessantes como dark sólitons, table-top sólitons, kinks, breathers e wobbles são obtidas para todas as equações da hierarquia mKdV. Introduzimos também, uma deformação integrável da hierarquia mKdV que contém a equaçãoo de Gardner. Soluções com condição de contorno nula desta hierarquia estão relacionadas com soluções de vácuo não trivial da hierarquia mKdV. O segundo problema consiste numa generalização da construção Lie algébrica da equação curvatura nula. A construção usual foi motivada pela estrutura dos modelos de Toda afim e é capaz de gerar as hierarquias mKdV/sinh-Gordon e AKNS/Lund-Regge. Propomos uma generalização que contém, além destas, outras hierarquias integráveis como as hierarquias de Wadati-Konno-Ichikawa (WKI) e Kaup-Newell (KN). Estas hierarquias contém modelos interessantes e alguns deles não foram suficientemente estudados, especialmente os de fluxo negativo. Mostramos que equações... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this thesis we approach two distinct problems. The first one deals with boundary value problems for integrable hierarchies. Through the dressing method, which was successfully employed in the construction of vanishing boundary soliton solutions, we propose an algebraic approach to solve the nonvanishing boundary value problem where the vacuum has a nontrivial field configuration. We apply the proposed method to the mKdV and AKNS hierarchies with a constant boundary value. We introduce vertex operators that takes into account the boundary condition, generalizing previous known vertex operators. When the vacuum tends to zero, we recover previous known results with vanishing boundary condition. Interesting solutions arises like dark solitons, table-top solitons, kinks, breathers and wobbles for the whole mKdV hierarchy. We also introduce an integrable deformation of the mKdV hierarchy containing the Gardner equation. Solutions of this deformed hierarchy are related with nontrivial vacuum solutions of the mKdV hierarchy. The second problem consists in a generalization of the Lie algebraic structure of the zero curvature equation. The usual construction was motivated by affine Toda field theories and can generate the mKdV/sinh-Gordon and AKNS/Lund-Regge hierarchies. We propose a new construction that contains, besides them, other integrable hierarchies like the Wadati-Konno-Ichikawa (WKI) and Kaup-Newell (KN). We show that interesting models like the short-pulse equation recently proposed by Schafer-Wayne and the bosonic Thirring model, arise naturally from this construction. Moreover, this construction embraces a larger class of models into a systematic algebraic... (Complete abstract click electronic access below) / Doutor
34

Opérateurs et polynômes de Demazure pour les algèbres de Kac-Moody finies et affines

Verneyre-Petitgirard, Séverine 15 June 2004 (has links) (PDF)
Notre travail porte sur les modules de Demazure sur les algèbres de Kac-Moody de type fini et affine et plus spécialement sur sl^(n). Nous étudions le caractère et la dimension des modules de Demazure. Cette étude nous amène à aborder, d'une part, les opérateurs de Demazure, liés aux caractères, et d'autre part, les polynômes de Demazure, liés à la dimension. Nous prouvons tout d'abord différents résultats d'harmonicité pour les polynômes de Demazure. Puis, pour les algèbres de type fini, nous montrons que les opérateurs de Demazure forment une base des Z[P]^W-endomorphismes de Z[P] et que les polynômes de Demazure forment une base de l'ensemble des polynômes, sur P, harmoniques pour W et à valeur dans Z. Enfin, pour l'algèbre sl^(n), nous définissons et étudions un sous-ensemble E de W de densité non nulle sur lequel nous calculons le caractère réel des modules de Demazure et les polynômes de Demazure. En petit rang nous en déduisons les polynômes pour un sous-ensemble plus grand.
35

Low-dimensional cohomology of current Lie algebras

Zusmanovich, Pasha January 2010 (has links)
We deal with low-dimensional homology and cohomology of current Lie algebras, i.e., Lie algebras which are tensor products of a Lie algebra L and an associative commutative algebra A. We derive, in two different ways, a general formula expressing the second cohomology of current Lie algebra with coefficients in the trivial module through cohomology of L, cyclic cohomology of A, and other invariants of L and A. The first proof is achieved by using the Hopf formula expressing the second homology of a Lie algebra in terms of its presentation. The second proof employs a certain linear-algebraic technique, ideologically similar to “separation of variables” of differential equations. We also obtain formulas for the first and, in some particular cases, for the second cohomology of the current Lie algebra with coefficients in the “current” module, and the second cohomology with coefficients in the adjoint module in the case where L is the modular Zassenhaus algebra. Applications of these results include: description of modular semi-simple Lie algebras with a solvable maximal subalgebra; computations of structure functions for manifolds of loops in compact Hermitian symmetric spaces; a unified treatment of periodizations of semi-simple Lie algebras, derivation algebras (with prescribed semi-simple part) of nilpotent Lie algebras, and presentations of affine Kac-Moody algebras.
36

Infinite-dimensional lie theory for gauge groups

Wockel, Christoph. Unknown Date (has links)
Techn. University, Diss., 2006--Darmstadt.
37

Estrutura algébrica de hierarquias integráveis e problemas de valor de contorno

França, Guilherme Starvaggi [UNESP] 09 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-12-09Bitstream added on 2014-06-13T19:25:51Z : No. of bitstreams: 1 franca_gs_dr_ift.pdf: 535273 bytes, checksum: edf04248b447d90dd177d59543bbdce5 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Nesta tese abordamos dois problemas. O primeiro trata-se do problema de condição de contorno para hierarquias integráveis. Através do método de dressing, que foi utilizado com êxito para construir soluções do tipo sóliton com condição de contorno nula, propomos uma abordagem geral para resolver o problema com condição de contorno não nula, onde o vácuo possui uma configuração de campos não trivial. Aplicamos então este método, para as hierarquias mKdV e AKNS com condição de contorno constante. Introduzimos operadores de vértice que incorporam a condição de contorno do problema, generalizando os operadores de vértice utilizados anteriormente. Quando o vácuo tende a zero, recuperamos os resultados conhecidos com condição de contorno nula. Soluções interessantes como dark sólitons, table-top sólitons, kinks, breathers e wobbles são obtidas para todas as equações da hierarquia mKdV. Introduzimos também, uma deformação integrável da hierarquia mKdV que contém a equaçãoo de Gardner. Soluções com condição de contorno nula desta hierarquia estão relacionadas com soluções de vácuo não trivial da hierarquia mKdV. O segundo problema consiste numa generalização da construção Lie algébrica da equação curvatura nula. A construção usual foi motivada pela estrutura dos modelos de Toda afim e é capaz de gerar as hierarquias mKdV/sinh-Gordon e AKNS/Lund-Regge. Propomos uma generalização que contém, além destas, outras hierarquias integráveis como as hierarquias de Wadati-Konno-Ichikawa (WKI) e Kaup-Newell (KN). Estas hierarquias contém modelos interessantes e alguns deles não foram suficientemente estudados, especialmente os de fluxo negativo. Mostramos que equações... / In this thesis we approach two distinct problems. The first one deals with boundary value problems for integrable hierarchies. Through the dressing method, which was successfully employed in the construction of vanishing boundary soliton solutions, we propose an algebraic approach to solve the nonvanishing boundary value problem where the vacuum has a nontrivial field configuration. We apply the proposed method to the mKdV and AKNS hierarchies with a constant boundary value. We introduce vertex operators that takes into account the boundary condition, generalizing previous known vertex operators. When the vacuum tends to zero, we recover previous known results with vanishing boundary condition. Interesting solutions arises like dark solitons, table-top solitons, kinks, breathers and wobbles for the whole mKdV hierarchy. We also introduce an integrable deformation of the mKdV hierarchy containing the Gardner equation. Solutions of this deformed hierarchy are related with nontrivial vacuum solutions of the mKdV hierarchy. The second problem consists in a generalization of the Lie algebraic structure of the zero curvature equation. The usual construction was motivated by affine Toda field theories and can generate the mKdV/sinh-Gordon and AKNS/Lund-Regge hierarchies. We propose a new construction that contains, besides them, other integrable hierarchies like the Wadati-Konno-Ichikawa (WKI) and Kaup-Newell (KN). We show that interesting models like the short-pulse equation recently proposed by Schafer-Wayne and the bosonic Thirring model, arise naturally from this construction. Moreover, this construction embraces a larger class of models into a systematic algebraic... (Complete abstract click electronic access below)
38

Sur les propriétés algébriques et géométriques des groupes de Kac-Moody

RÉMY, Bertrand 10 December 2003 (has links) (PDF)
Ce mémoire présente un point de vue issu de la théorie des groupes discrets sur les groupes de Kac-Moody. Sur les corps finis, ces groupes sont de type fini ; ils opèrent sur de nouveaux immeubles jouissant bien souvent de remarquables propriétés de courbure négative. On justifie que les groupes de Kac-Moody de type fini peuvent être vus comme des généralisations de certains groupes $S$-arithmétiques en caractéristique positive. On explique comment ils fournissent de nouveaux immeubles, et pourquoi on peut s'attendre à ce que les groupes eux-mêmes soient nouveaux. Nous considérons aussi des groupes totalement discontinus généralisant certains groupes semi-simples sur des corps locaux, comme en attestent leurs propriétés combinatoires fines et leur simplicité topologique. L'étude de leurs frontières de Furstenberg est évoquée. Nous résumons la preuve de la complète non linéarité de certains groupes de Kac-Moody. C'est ici que nous utilisons les propriétés des groupes topologiques précédents, en les combinant à un théorème de super-rigidité du commensurateur. En fait, on peut construire des groupes dont toutes les images linéaires sont finies, quel que soit le corps de base à l'arrivée. Enfin, nous conjecturons divers résultats sur les groupes précédemment définis, par exemple, la non linéarité (et peut-être la simplicité) d'une vaste classe de groupes de Kac-Moody de présentation finie. Nous conjecturons également la simplicité abstraite des groupes de Kac-Moody géométriquement complétés, et proposons un lien entre ces groupes et une autre définition des groupes de Kac-Moody (issue de l'étude des variétés de Schubert et de la théorie des représentations). Nous relions ces conjectures à des travaux en cours sur les compactifications d'immeubles de Bruhat-Tits.
39

Études des masures et de leurs applications en arithmétique / Study of masures and of their applications in arithmetic

Hebert, Auguste 28 June 2018 (has links)
Les masures ont été introduites en 2008 par Gaussent et Rousseau afin d’étudier les groupes de Kac-Moody sur les corps locaux. Elles généralisent les immeubles de Bruhat-Tits. Dans cette thèse, j’étudie d’une part les propriétés des masures et d’autre part leurs applications en arithmétique et en théorie des représentations. Rousseau a donné une définition axiomatique des masures, inspirée par la définition de Tits des immeubles de Bruhat-Tits. Je propose une axiomatique plus simple et plus agréable à manipuler et je montre que mon axiomatique est équivalente à celle de Rousseau.Nous étudions (en collaboration avec Ramla Abdellatif) les algèbres de Hecke sphériques et d’Iwahori-Hecke introduites par Bardy-Panse, Gaussent et Rousseau. Nous démontrons que contrairement au cas réductif, le centre de leur algèbre d’Iwahori-Hecke est quasiment trivial, et n’est en particulier pas isomorphe à l’algèbre de Hecke sphérique. Nous introduisons donc une algèbre d’Iwahori-Hecke complétée, dont le centre est isomorphe à l’algèbre de Hecke sphérique. Nous associons aussi des algèbres de Hecke à des faces sphériques comprises entre 0 et l’alcôve fondamentale de la masure,généralisant la construction de Bardy-Panse, Gaussent et Rousseau de l’algèbre d’Iwahori-Hecke.La formule de Gindikin-Karpelevich est une formule importante dans la théorie des groupes réductifs sur les corps locaux. Récemment, Braverman,Garland, Kazhdan, et Patnaik ont généralisé cette formule au cas des groupes de Kac-Moody affines. Une partie importante de leur preuve consiste à montrer que cette formule est bien définie, c’est à dire que les nombres intervenants dans cette formule, qui sont les cardinaux de certains sous groupes de quotients du groupe étudié sont bien finis. Je démontre cette finitude dans le cas des groupes de Kac-Moody généraux. J’étudie aussi les distances sur une masure. Je montre qu’on ne peux pas avoir de distance ayant les mêmes propriétés que dans le cas réductif. Je construis des distances ayant des propriétés moins forte mais qui semblent intéressantes. / Masures were introduced in 2008 by Gaussent and Rousseau in order to study Kac-Moody groups over local fields. They generalize Bruhat-Tits buildings. In this thesis, I study the properties of masures and the application of the theory of masures in arithmetic and representation theory. Rousseau gave an axiomatic of masures, inspired by the definition by Tits of Bruhat-Tits buildings. I propose an axiomatic, which is simpler and easyer to handle and I prove that my axiomatic is equivalent to the one of Rousseau. We study (in collaboration with Ramla Abdellatif) the spherical and Iwahori-Hecke algebras introduced by Bardy-Panse, Gaussent and Rousseau. We prove that on the contrary to the reductive case, the center of the Iwahori-Hecke algebra is almost trivial and is in particular not isomorphic to the spherical Hecke algebra. We thus introduce a completed Iwahori-Hecke algebra, whose center is isomorphic to the spherical Hecke algebra. We also associate Hecke algebras to spherical faces between 0 and the fundamental alcove of the masure, generalizing the construction of Bardy-Panse, Gaussent and Rousseau of the Iwahori-Hecke algebra.The Gindikin-Karpelevich formula is an important formula in the theory of reductive groups over local fields. Recently, Braverman, Garland, Kazhdanand Patnaik generalized this formula to the case of affine Kac-Moody groups. An important par of their prove consists in proving that this formula iswell-defined, which means that the numbers involved in this formula, which are the cardinals of certain subgroup of quotients of the studied subgroupare finite. I prove this finiteness in the case of general Kac-Moody groups.I also study distances on a masure. I prove that there is no distance having the same properties as in the reductive case. I construct distances having weaker properties, but which seem interesting.

Page generated in 0.0217 seconds