Spelling suggestions: "subject:"kacmoody, algebras dde."" "subject:"kacmoody, algebras dee.""
1 |
Soluções sóliton do modelo de Toda su(3) afim acoplado a campos de matéria /Bueno, André Gimenez. January 2001 (has links)
Orientador: Luiz Agostinho Ferreira / Banca: Jose Eduardo Martinho Hornos / Banca: Abraham Hirsz Zimerman / Resumo: Nesta dissertação calculamos as soluções de um e dois sólitons modelo de Toda com álgebra de Kac-Moody afim su(3) acoplado a campos de matéria assim como o time delay para o caso 2-sóliton. As soluções são obtidas a partir de uma combinação dos métodos de dressing e Hirota. Há ao todo quatro campos escalares e seis espinores de Dirac. Nós mostramos que, após uma redução Hamiltoniana, a corrente topológica (envolvendo somente escalares) é proporcional à corrente de Nöther U(1) (envolvendo somente espinores) e isso conduz a um confinamento dos espinores dentro dos sólitons / Abstract: We calculate the one and two soliton solutions for the Toda model coupled to matter fields in the case of an affine su(3) Kac-Moody algebra, as well as the time delay in the 2-soliton case. The Solutions are obtained using a combination of the dressing and Hirota methods. There are altogether four scalar fields and six Dirac spinors. We show that, after a Hamiltonian reduction, the topological current (involving scalars only) is, up to a non-vanishing factor, equal to the U(1) Nöther current (involving the spinors only) and this leads to a confinement of the spinors inside the solitons / Mestre
|
2 |
Estrutura algébrica dos modelos integráveisFrança, G. S [UNESP] 16 April 2007 (has links) (PDF)
Made available in DSpace on 2016-05-17T16:50:54Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-04-16. Added 1 bitstream(s) on 2016-05-17T16:54:21Z : No. of bitstreams: 1
000855807.pdf: 420265 bytes, checksum: 0d551ee445aae9709b18c8ce3eed7d19 (MD5) / A estrutura das álgebras de Kac-Moody e suas representações constituem o ingrediente básico para a construção de hierarquias integráveis e de suas respectivas soluções solitônicas (obtidas através do método de dressing). Diversos modelos contidos nas hierarquias mKdVeAKNS são discutidos em detalhe e uma nova classe de equações integráveis, correspondente a graus negativos pares da hierarquia mKdV, é proposta. Diferentes soluções e operadores de recursão são construídos para ambas as hierarquias / The structure of Kac-Moody algebras and its representations constitute a basic ingredient for the construction of integrable hierarchies and its soliton solutions (obtained from the dressing method). Several models within the mKdV and KNS hierarchies are discussed in detail and some new integrable equations, corresponding to negative even grades of the mKdV hierarchy, are proposed. Different solutions and recursion operators are constructed for both hierarchies
|
3 |
Estrutura algébrica dos modelos integráveis /França, Guilherme Starvaggi. January 2007 (has links)
Orientador: José Francisco Gomes / Banca: Paulo Teotônio Sobrinho / Banca: Clisthenis Ponce Constantinidis / Resumo: A estrutura das álgebras de Kac-Moody e suas representações constituem o ingrediente básico para a construção de hierarquias integráveis e de suas respectivas soluções solitônicas (obtidas através do método de dressing). Diversos modelos contidos nas hierarquias mKdVeAKNS são discutidos em detalhe e uma nova classe de equações integráveis, correspondente a graus negativos pares da hierarquia mKdV, é proposta. Diferentes soluções e operadores de recursão são construídos para ambas as hierarquias / Abstract: The structure of Kac-Moody algebras and its representations constitute a basic ingredient for the construction of integrable hierarchies and its soliton solutions (obtained from the dressing method). Several models within the mKdV and KNS hierarchies are discussed in detail and some new integrable equations, corresponding to negative even grades of the mKdV hierarchy, are proposed. Different solutions and recursion operators are constructed for both hierarchies / Mestre
|
4 |
Estrutura algébrica de hierarquias integráveis e problemas de valor de contorno /França, Guilherme Starvaggi. January 2011 (has links)
Orientador: José Francisco Gomes / Coorientador: Abraham Hirsz Zimerman / Banca: A. Lima Santos / Banca: A. Foekster / Banca: Paulo Afonso Faria da Veiga / Banca: P. Teotônio Sobrinho / Resumo: Nesta tese abordamos dois problemas. O primeiro trata-se do problema de condição de contorno para hierarquias integráveis. Através do método de dressing, que foi utilizado com êxito para construir soluções do tipo sóliton com condição de contorno nula, propomos uma abordagem geral para resolver o problema com condição de contorno não nula, onde o vácuo possui uma configuração de campos não trivial. Aplicamos então este método, para as hierarquias mKdV e AKNS com condição de contorno constante. Introduzimos operadores de vértice que incorporam a condição de contorno do problema, generalizando os operadores de vértice utilizados anteriormente. Quando o vácuo tende a zero, recuperamos os resultados conhecidos com condição de contorno nula. Soluções interessantes como dark sólitons, table-top sólitons, kinks, breathers e wobbles são obtidas para todas as equações da hierarquia mKdV. Introduzimos também, uma deformação integrável da hierarquia mKdV que contém a equaçãoo de Gardner. Soluções com condição de contorno nula desta hierarquia estão relacionadas com soluções de vácuo não trivial da hierarquia mKdV. O segundo problema consiste numa generalização da construção Lie algébrica da equação curvatura nula. A construção usual foi motivada pela estrutura dos modelos de Toda afim e é capaz de gerar as hierarquias mKdV/sinh-Gordon e AKNS/Lund-Regge. Propomos uma generalização que contém, além destas, outras hierarquias integráveis como as hierarquias de Wadati-Konno-Ichikawa (WKI) e Kaup-Newell (KN). Estas hierarquias contém modelos interessantes e alguns deles não foram suficientemente estudados, especialmente os de fluxo negativo. Mostramos que equações... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this thesis we approach two distinct problems. The first one deals with boundary value problems for integrable hierarchies. Through the dressing method, which was successfully employed in the construction of vanishing boundary soliton solutions, we propose an algebraic approach to solve the nonvanishing boundary value problem where the vacuum has a nontrivial field configuration. We apply the proposed method to the mKdV and AKNS hierarchies with a constant boundary value. We introduce vertex operators that takes into account the boundary condition, generalizing previous known vertex operators. When the vacuum tends to zero, we recover previous known results with vanishing boundary condition. Interesting solutions arises like dark solitons, table-top solitons, kinks, breathers and wobbles for the whole mKdV hierarchy. We also introduce an integrable deformation of the mKdV hierarchy containing the Gardner equation. Solutions of this deformed hierarchy are related with nontrivial vacuum solutions of the mKdV hierarchy. The second problem consists in a generalization of the Lie algebraic structure of the zero curvature equation. The usual construction was motivated by affine Toda field theories and can generate the mKdV/sinh-Gordon and AKNS/Lund-Regge hierarchies. We propose a new construction that contains, besides them, other integrable hierarchies like the Wadati-Konno-Ichikawa (WKI) and Kaup-Newell (KN). We show that interesting models like the short-pulse equation recently proposed by Schafer-Wayne and the bosonic Thirring model, arise naturally from this construction. Moreover, this construction embraces a larger class of models into a systematic algebraic... (Complete abstract click electronic access below) / Doutor
|
Page generated in 0.0504 seconds