• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Biology Of Two Sexes : A Study Of The Primitively Eusocial Wasp Ropalidia Marginata

Sen, Ruchira 07 1900 (has links)
A striking feature of hymenopterans societies is the absence of male workers. Foraging, nest building, brood care and all other activities required for the functioning of the colony are carried out by the females. These behaviours of the females and the implied cooperation and altruism have led social insect researchers to focus almost exclusively on the female members of hymenopterans societies. As a consequence, males have remained relatively neglected. The imbalance in the attention paid by researchers to females and males has been even more striking in the case of the extensively studied primitively eusocial wasp Rosalinda marginata. I have therefore focussed most of my attention to male R. marginata but of course, wherever possible and appropriate, I have compared the males with the females. Since almost nothing was known about R. marginata males, I began by obtaining basic information on the natural history and behaviour of the males. Male R. marginata are smaller in size and are different in the shape of the head as compared to the females. By conducting a three year survey, I found that just as nests of this species are found throughout the year, so are the males. The presence of males throughout the year has implications for the evolution of sociality by making available the opportunity to mate and found new nests, for females eclosing at any time of the year. Unlike the females who spend all their life on their nests, males stay on their natal nests only for one to twelve days (mean ± sd: 6.0 ± 2.6, N = 55) and leave their natal nest once and for all, to lead a nomadic life. It is difficult to determine how long males live after leaving their natal nests. However, I maintained males in the laboratory with ad libitum food and found that under these conditions they can live up to 140 days (mean physiological life span ± SD: 61.3 ± 28.0, N = 106). Like all eusocial hymenopterans males, R. marginata males also do not take part in any colony maintenance activities. They however, occasionally perform the following behaviours: solicit food, antennae nest, antennae another wasp, feed self, snatch food (from females), fan wings, body jerk and wing jerk, dominance and subordinate behaviours. Females of course perform all of these behaviours and many more. But there are no behaviours which are restricted to the males. Borrowing methods used by ecologists to measure species richness and diversity, I have computed the behavioral richness and diversity of male and female R. marginata. As expected, female behaviour is richer and more diverse compared to males. Comparing what the males did during their short stay on the nest and what females did during their long stay on the nest, I found that males did not forage or feed larvae (although I recorded one male feeding larvae thrice on one occasion when there seemed to be excess food on the nest). Males showed, dominance and subordinate behaviours and being solicited behaviour, significantly less often than females. On the other hand, males showed higher frequencies of feeding self and soliciting behaviour. However, these comparisons may not be fair because what males do in the first few days of their life is being compared with what females do throughout their life. Hence I truncated the female data at six days to make it comparable to the average age of the males on the nest. Even after doing so I found similar differences except that the males show similar rates of feed self and higher rates of subordinate behaviour compared to the young females. As mentioned in the beginning, absence of male workers is a striking feature of social Hymenoptera. I therefore naturally turned my attention to the possible reasons for this. As there has been much speculation on the ultimate, evolutionary explanations for why males do not work, I decided to investigate possible proximate explanations. To make my goal experimentally tractable, I decided to focus on the behaviour of feeding larvae as an example of work. In spite of the fact that R. marginata has been studied for over two decades, male R. marginata had never been seen to feed larvae, before my study. I advanced three hypotheses for why males do not feed larvae. (1) Males are incapable of feeding larvae. (2) Males do not feed larvae because they have insufficient access to food to satisfy themselves and to feed the larvae. (3) Males do not feed larvae because females perform the same task very efficiently. In a series of experiments designed to test these hypotheses, I showed that males are indeed capable of feeding larvae; they do so at small frequencies when given access to additional food and do so at impressive frequencies when deprived of females, provided with excess food and confronted with hungry larvae. Nevertheless, their ‘feed larva’ behaviour is less sophisticated and relatively inefficient compared to females. Thus I have shown male wasps can work, given an opportunity. In addition to being very satisfying, this result negates the preadaptation hypothesis which argues that male social Hymenoptera do not work because their solitary ancestors did not. In spite of what I have shown above, mating remains the main roleof the males. Therefore, I next turned my attention to a study of mating behaviour. It is well known that mating never takes place on the nest of R. marginata. Although some sporadic attempts had been made before, mating behaviour had never been observed in laboratory conditions before my study. In a series of trial-and-error pilot experiments, varying the age, cage size, number of wasps per cage, period of isolation from other wasps, lighting conditions etc., and with considerable help from enthusiastic volunteers among my lab-mates, I succeeded in observing mating behaviour in the laboratory. In the final, standardized experimental set up, we introduced a single male and a single female wasp, both isolated from their nests and other wasps for at least five days, into an aerated transparent plastic box and made observations for one hour. Using such an experimental set up, we first made a detailed qualitative description of mating behaviour. All behavioral interactions were initiated by the males. Males often attempted to mount the females but sometimes the females flew away, making the attempt to mount unsuccessful. On other occasions males successfully mounted the females, which involved climbing on the female and drumming and rubbing his antennae and abdomen on the corresponding parts of the female body. On some occasions mounting led to interlocking of the abdominal tips, a process we refer to as ‘conjugation’. Sometimes the conjugation lasted less than five seconds and during which the male remained on the back of the female; this was referred to as short conjugation (SC). But at other times the conjugation lasted for more than 20 seconds, and the male flipped on its back; this was Referred to as long conjugation (LC). I dissected all females, involved ineither LC or SC or both. Of the 47 pairs, 21 pairs mated successfully as judged by the transfer of sperm into the spermatheca. With the goal of developing a strategy to obtain live mated females for any future experiments, we attempted to determine the behavioral correlate/s of successful sperm transfer. It turns out that SC is inadequate for sperm transfer and LC is a good predictor of sperm transfer. Five to twenty days of age is optimal for mating for both males and females. There was a significant reduction in the probability of mating when one or both partners were younger or older than 5-20 days. We did not find any evidence for nestmate discrimination in the context of mating. This is not surprising because mating takes place away from the nest and active nestmate discrimination may therefore be unnecessary to avoid inbreeding. Under these experimental conditions neither body size of males and females nor ovarian conditions of the females appeared to influence mating success. I hope that my studies will enhance attention of future researchers to the males and will also facilitate experiments requiring mated wasps and permit the study of mate choice and other reproductive behaviours in this otherwise well- studied species.
2

Game of Thrones : Direct Fitness through Nest Foundation in the Primitively Eusocial Wasp Ropalidia Marginata

Brahma, Anindita January 2017 (has links) (PDF)
Reproduction is the avenue for gaining direct fitness. But in certain species some individuals do not reproduce, instead gain indirect fitness by helping relatives to reproduce; the prime examples for this come from the worker caste of social insects like ants, bees and wasps. For explaining such a perplexing paradox, also known as altruism, W.D. Hamilton proposed that individuals can gain fitness in two ways: directly, by reproducing (direct fitness), and indirectly, by helping relatives to reproduce (indirect fitness). Indirect fitness has since been the main focus for explaining the evolution of workers while usually overlooking the fact that workers can also gain direct fitness. One of the avenues for gaining direct fitness by workers is nest foundation and we have studied this phenomenon in a primitively eusocial wasp Ropalidia marginata. We found that workers routinely leave their natal nests to initiate new nests either alone or with a few other wasps. Before leaving their natal nests, such workers prepare in several ways for nest foundation, like enhancing their nutrient reserves and forming outside nest aggregations to engage in dominance interactions. Next, we investigated the emergence of cooperation and division of labour in newly founded nests and how these affect the productivities of the new nests. We found that while two wasps are sufficient for the emergence of cooperation and reproductive division of labour (DOL), it takes three wasps for non-reproductive DOL to emerge; cooperation and reproductive DOL are not sufficient for increasing colony productivity which comes about only with the addition of non-reproductive DOL. Finally, we found that it is ageing and nutrition, and not work done towards gaining indirect fitness that affect workers’ potential of gaining future direct fitness by independent reproduction via nest foundation, in other words, current indirect fitness is not incompatible with future direct fitness.
3

Social Organisation And Cooperation In Genetically Mixed Colonies Of The Primitively Eusocial Wasp, Ropalidia Marginata

Arathi, H S January 1996 (has links)
Altruism in its extreme form is seen in social insects where most individuals give up their own reproduction and work to rear the offspring of their queen. The origin and evolution of such sterile worker castes remains a major unsolved problem in evolutionary biology. Primitively eusocial polistine wasps are an attractive model system for investigating this phenomenon. Ropalidia marginata (Lep.) (Hymenoptera: Vespidae) is one such tropical primitively eusocial wasp, in which new nests are initiated either by a single foundress or by a group of female wasps. Worker behaviour in Ropalidia marginata cannot be satisfactorily explained by the haplodiploidy hypothesis due to the existence of polyandry and serial polygyny which reduce intra-colony genetic relatedness to levels lower than the value expected between a solitary foundress and her offspring. Besides, wasps appear to move frequently between newly initiated nests, perhaps further reducing intracolony genetic relatedness. To study social organization and examine the possibility of kin recognition and task specialization under conditions of low intra-colony relatedness, genetically mixed colonies were created by introducing alien one-day old wasps onto recipient nests. As a first step I have tried to determine the factors that influence the acceptance of foreign wasps onto established colonies. I have introduced wasps between 1 to 20 days of age from donor colonies located at least 10 km away onto 12 different recipient colonies, observed these wasps for a period of 10 hours and later dissected them to examine their ovarian condition. Observations were carried out in the blind i.e. the observer was unaware of the identity of the wasps. Wasps upto 6 days of age were accepted by the alien nests. Older wasps may have been rejected because their relatively better ovarian condition may have been perceived as a reproductive threat to the recipient nest. Alternatively, younger wasps may have been accepted because they may be more easily moulded to the desired roles or due to some other correlate of age per se independent of ovarian condition. Although ovarian condition appeared to influence the probability of acceptance, it was not statistically significant in the presence of age in multiple regression models, making a favourable case for the 'ease of moulding hypothesis' or 'age per se hypothesis' over the 'reproductive threat hypothesis'. In any case these findings gave me a method to create genetically mixed colonies. On 12 different nests Ropalidia marginata, I similarly introduced one-day old wasps and thus created genetically mixed colonies. Such an introduction simulates the eclosion of distantly related individuals which is quite common on nests of R. marginata due to the presence of serial polygyny. About 7 such wasps were introduced per colony and the introductions were so arranged as to matched with natural eclosions on the recipient nest. After 7 days following the last introduction, colonies were observed for 20 hours each. Alien wasps became well integrated and performed most of the behaviours and tasks shown by the natal wasps. There was no evidence of kin recognition or task specialization between natal and introduced wasps. The introduced wasps also sometimes became replacement queens. In an attempt to test the costs in terms of brood rearing efficiency, of living in such genetically variable groups, I created kin and non-kin pairs of wasps in plastic containers. They were provided with ad libitum food, water and building material. The nests initiated were monitored till an adult offspring eclosed. There were no detectable differences in either the productivities or the developmental periods of immature stages in the kin and nonkin pairs suggesting that there is no apparent cost of living with unrelated or distantly related individuals. To compare the extent of cooperation between the two wasps in kin and non-kin pairs, I conducted behavioural observations on 12 pairs each of kin and nonkin wasps. I found no difference in the rates at which the non-egg layers brought food and pulp, fed larvae and built the nest in the kin and nonkin pairs suggesting that cooperative nest building and brood rearing was common to the kin as well as non-kin pairs. The results reported here strengthen the idea that factors other than genetic relatedness must play a prominent role in the maintenance of worker behaviour in Ropalidia marginata.
4

For Queen and Country : Reproductive and Non-Reproductive Division of Labour in the Primitively Eusocial Wasp Ropalidia Cyathiformis

Unnikrishnan, Sruthi January 2017 (has links) (PDF)
Division of labour is a hallmark of eusocial insects and is believed to be a major factor in their evolutionary success and ecological dominance. Division of labour can be of two kinds – reproductive division of labour where a minority of individuals are egg-layers or reproductives (kings and queens) and the majority are workers or non-reproductives involved mostly in non-reproductive tasks of the colony (workers). Kings/queens and workers are often referred to as separate castes within a social insect colony. There may be further non-reproductive division of labour within the worker caste, based on their morphology or age. In primitively eusocial organisms there is no morphological caste differentiation between the egg-layers and non-egg-layers resulting in greater flexibility in the social roles of individuals within a colony. This creates a very interesting scenario to study the mechanism of division of labour. Moreover our knowledge regarding division of labour especially non-reproductive division of labour is very limited for primitively eusocial organisms. In this thesis I have studied division of labour in a primitively eusocial wasp species, Ropalidia cyathiformis. R. cyathiformis is a tropical primitively eusocial wasp with a perennial nesting cycle. This species usually has a single dominant queen and several workers. I studied reproductive and non-reproductive division of labour, as well as the role of dominance behaviour in the regulation of both reproductive and non-reproductive activities. In addition to this I have also compared my findings with what is already known in the well-studied congeneric species, Ropalidia marginata. Reproductive division of labour To understand reproductive division of labour in R. cyathiformis, I studied queen succession, by experimentally removing the queen. When the queen was removed, one and only one individual increased her aggression and became the new queen of the colony, unchallenged by any other worker. Such a successor was referred to as a potential queen (PQ) until she lays her first egg. By removing the queen and successive PQs, I showed that there is not just one successor but a strict reproductive hierarchy of up to 3 PQs, who succeed the queen one after the other. Of many variables tested, I found that only the frequency of dominance behaviour was a significant predictor of whether or not an individual is part of the reproductive hierarchy and also of her position in the hierarchy. Dominance behaviour however does not perfectly predict the position of an individual in the reproductive hierarchy because I showed that an average of three more dominant individuals, are bypassed when an individual becomes the next queen or PQ. This was in contrast to the reproductive hierarchy in the congeneric Ropalidia marginata, where age rather than dominance behaviour was a predictor (though imperfect once again) of an individual’s position in the queue. Taken together, my results suggest that (a) these two sister species have evolved two rather different mechanisms of reproductive caste differentiation, (b) that neither of them strictly conform either to the so called “temperate” or “tropical” patterns of queen succession seen in most other species studied so far. Non-reproductive division of labour As mentioned above, non-reproductive division of labour in eusocial insects is based on either the morphology or the age of the individuals within the colony. Since there is no morphological castes present in primitively eusocial species, I focussed on the effect of age on division of labour in R. cyathiformis. I analysed the frequency as well as the probability of performance of four functionally significant tasks namely, two intranidal tasks – feed larva and build as well as two extranidal tasks – bring food and bring building material. I measured absolute as well as relative ages of the wasps. I found that there is an effect of age on division of labour. Age of first performance of the tasks indicated a clear sequence for the initiation of the tasks with intranidal tasks initiated before extranidal tasks. The frequency of task performance (FTP) and absolute age better explained the variation in the data as compared to probability of task performance (PTP) and relative age. This was in contrast to the pattern of age polyethism found in the congeneric species, Ropalidia marginata, where PTP and relative age better explains the variation in the data. This suggests a more flexible age-dependant division of labour in R. marginata and a rigid age polyethism in R cyathiformis. In addition I found that there was no clear-cut partitioning of the intranidal and extranidal tasks in R. cyathiformis, whereas in R. marginata, it has been shown that the frequency of the intranidal tasks decline with age while that of extranidal tasks increase with age. When taken together, I could say that R. marginata has a more strongly developed age polyethism as compared to R. cyathiformis. This study also shows an evolution of age polyethism with R. cyathiformis behaving more like a typical primitively eusocial species while R. marginata more like a highly eusocial species. Role of dominance behaviour in reproductive and non-reproductive division of labour When reproductive regulation in R. cyathiformis was studied, I found that queens of this species target the potential queen (PQ) by showing the maximum frequency per hour of dominance behaviour to the PQ. The PQs on the other hand seem to show the maximum amount of dominance behaviour towards newborns (wasps of age class 0-5 days). Queens seem to regulate only reproductive activities and not the non-reproductive activities as there was no difference in the frequency of both feed larva and bring food behaviour in the colony even after removing the queen. It also appears that dominance behaviour is not used to signal hunger or regulate foraging as there was no significant correlation between the frequency per hour of bring food behaviour and dominance behaviour received. Moreover the foragers do not receive more aggression than other wasps in the colony from either the queen, PQ or intranidal workers. I also found a significant positive correlation between the frequency per hour of bring food behaviour and feed larva behaviour implying that foraging might be a self-regulated process in this species. Hence in R. cyathiformis it appears that dominance behaviour is used only for regulation of reproductive division of labour and not for regulation of non-reproductive division of labour. This was in contrast to the congeneric species, R. marginata where the opposite has been shown to be true; the reproductive regulation is achieved by means of pheromones produced by the queen and work organisation follows a decentralised self-organised manner with intranidal workers signalling or regulating foragers using dominance behaviour. Comparison with Ropalidia marginata Ropalidia cyathiformis and Ropalidia marginata, although congeneric species co-existing in the same habitat, have evolved very different mechanisms for division of labour. R. marginata exhibiting features such as 1) presence of a docile queen 2) reproductive regulation by means of pheromones 3) strongly developed and flexible age polyethism 4) decentralised work organisation seem to be more similar to a highly eusocial organism than to a primitively eusocial species. R. cyathiformis on the other hand seems to exhibit several features typical to a primitively eusocial species, such as 1) presence of a dominant queen 2) reproductive regulation by physical means 3) relatively weak and rigid age polyethism 4) self-regulatory method of work organisation. Hence the two species seem to be at two different stages of evolution with R. marginata appearing to be intermediate between primitively and highly eusocial species.
5

Attributes Of Royalty In The Primitively Eusocial Wasp Ropalidia marginata : Pheromone, Ovaries And Behavior

Mitra, Aniruddha 07 1900 (has links) (PDF)
This thesis has looked at the proximate mechanisms by which eusociality is maintained in colonies of the primitively eusocial wasp Ropalidia marginata. Unlike other typical primitively eusocial species, the R, marginata queen is remarkably docile and non-interactive and hence cannot possibly use aggression to maintain her status. Recent evidence hints at pheromonal queen signalling through the Dufour’s gland. Hence, queen-worker difference in Dufour’s gland composition has been studied in details. Queens and workers differ with respect to overall composition of Dufour’s glands, categories of compounds, and individual compounds as well. The Dufour’s gland compounds may be having a bouquet effect in queen signalling, with individual compounds being less important than the overall composition. The queen pheromone also appears to be an honest signal of fertility, as compounds that differ consistently between queens and workers are correlated with ovarian development of queens, and solitary foundresses and potential queens, who are intermediate between queens and workers in ovarian development, are intermediate in their Dufour’s gland profile as well. When the queen is removed from a colony, one of the workers (potential queen, PQ) shows high aggression, and if the queen is not returned, goes on to become the next queen of the colony. The aggression of PQ comes down as a function of time since queen removal, and correlated with this, the ovaries of PQ increase. Dufour’s gland profile of PQ is similar to workers immediately after queen removal, but comes closer to queens with passage of time. This hints at an interesting transition in maintenance of eusociality from “queen control” by aggression to “queen signal” by pheromone during the queen establishment phase. It has generally been assumed that one set of chemicals can carry multiple information, namely queen signal and colony signal. Initial statistical analysis of chemical composition data showed that perhaps both caste and colony signals can be conveyed by the Dufour’s gland compounds, but detailed analysis cast some doubt on this, as the Dufour’s gland compounds could not be separated into non-overlapping subsets with respect to importance in caste and colony discrimination. A bioassay showed that the wasps do not make colony discrimination from Dufour’s gland compounds. This suggests that the ability to statistically differentiate groups of organisms from their chemical profiles does not guarantee similar discrimination by the organisms themselves, emphasising the need for bioassays to resolve such issues.
6

Queen Succession in the Primitively Eusocial Wasp Ropalidia Marginata

Saha, Paromita January 2016 (has links) (PDF)
Social insects are the most dominant terrestrial fauna for the last 50 million years. This tremendous ecological success is accompanied by the fact that sociality has evolved multiple times independently and achieved highest degree of complexity in insect lineages. The remarkable social organization found in insect societies is the result of finely balanced cooperation and conflict among the colony members. A typical hymenopteran colony is characterised by one or a few queens monopolizing reproduction and several sterile workers co-operatively raising brood and performing colony activities. The colonies are often conceptualized as superorganisms where groups of cooperative workers are compared with organs in the body, each of which accomplish a particular task like brood care, foraging and defence. The choice of tasks is often regulated by a systematic age polyethism. As the queens monopolize reproduction, they serve as the sole suppliers of eggs in the colony. Therefore, loss or death of the queen creates a crucial void which exposes the colony to potential reproductive conflict for the position of egg-layer. This crisis is expected to be extreme in monogynous colonies. The situation is rescued only after a new queen is established, and the whole process is known as queen succession. I am interested in this crisis management, and my thesis deals with potential and realized conflicts associated with queen succession and behavioural strategies involved in resolution of these conflicts. The queen can be replaced in two ways - either by a newly eclosed specialized reproductive individual, which happens in highly eusocial hymenopterans, or by an existing member of the colony (worker), as it happens in primitively eusocial hymenopterans. Unlike in highly eusocial species, the workers of primitively eusocial species retain their ancestral capability of mating and activating ovaries to produce both sons and daughters, which makes them suitable for taking up the role of queen in their lifetime. Hence, primitively eusocial species provide a unique situation where loss or death of the queen might result in severe reproductive conflict as the queen can be replaced by any one of the existing workers. Strictly monogynous colonies of the tropical primitively eusocial wasp Ropalidia marginata provide ideal opportunities to study the reproductive conflict and its resolution associated with queen succession because the queen is frequently replaced by one of her nestmates resulting in a serial polygyny. These queens have highly variable tenures of queenship ranging from seven to over 200 days, which, together with the fact that they are replaced by a variety of relatives such as daughters, niece and cousins, suggests a potential reproductive conflict with variable degrees of complexity. I have divided my thesis in three parts which are as follows -Natural queen turnover: Previous works from this lab have tried to characterize the queen succession in R. marginata colonies by experimentally removing the queen from the colony. As this design involves the experimenter intervening at a random point of the colony cycle, the colony might not respond in the similar way as it might have done to a natural succession necessitated by loss or death of the queen. But rarity and unpredictability of natural queen turnovers made them difficult to study. Therefore, in this section, we gathered a dataset of long-term and opportunistic quantitative behavioural observations on eleven natural queen turnovers and compared them with available data on queen removal experiments. All our queen removal experiments resulted in a hyper-aggressive potential queen who gradually reduced her aggression, activated her ovaries and went on to become the unanimously accepted new queen of the colony if the original queen was not returned. Here we found a similar phenomenon in natural colonies where a single un-challenged potential queen took over the colony as new queen after the old queen was lost, died or was driven out of the colony. In some of the natural colonies, the transition was preceded by aggression shown by the potential queens towards their nestmates including the queens, which indicates that they might have pre-empted the transition. The potential queens in natural colonies started laying eggs much faster than in experimental colonies suggesting their physiological readiness for the transition. How does a colony respond to a declining queen?: As we could show that some of the potential queens might perceive the upcoming queen turnover, a fair prediction would be that they sense it through the declining fertility status of the queens. Therefore, we tried to ex-perimentally induce situations where the queen appears to be declining, expecting that it might lead to a queen turnover. The growing evidence suggests that R. marginata queen maintains her status by applying a pheromone on the nest surface by rubbing the tip of her abdomen. We knocked down the nest to deny the queen the surface for applying her pheromone, and argued that the queen would be overthrown as the workers would sense her as infertile. To our surprise, the queen maintained her status in six out of seven colonies by applying her pheromone on the entire surface of the cage. However, the effectively insufficient concentration of pheromone elicited aggression from workers towards the queen, and the queen retaliated back with aggression. These results suggest that the pheromone, being an honest signal of fertility, is extremely important for the queen for maintaining her reproductive monopoly, and the workers are able to perceive the decline of the queen from her pheromone. Queen-successor conflict over access to reproduction: Here we more explicitly looked at the potential reproductive conflict between the queen and her successor over access to direct reproduction. We used the theory of parent-offspring conflict proposed by Robert Trivers (1974) as the conceptual framework and adapted it to unravel the pat-tern of queen-successor conflict in R. marginata colonies. According to this idea, we expected that there should be a pre-conflict zone where the queen and the successor both would agree that the queen should continue to reproduce, followed by a conflict zone where the successor would try to takeover but the queen would hang on, finally followed by post-conflict zone where they both would agree that the successor should reproduce. To test this expectation, we maintained the queen and the potential queen on either side of a wire-mesh partition, each with randomly chosen half of the workers. It allowed the potential queen (successor) to establish herself and then we reintroduced the queen to her side of the mesh daily till the queen gave up. We could behaviourally characterise all three zones which always appeared in the expected sequence. The pre and post-conflict zones had no aggressive interaction between the queen and the potential queen, whereas the conflict zone was characterized by aggressive falling fight between them. This is our first success in experimentally creating overt conflict between the queen and her successor. Overall we can say, that the queens and the potential queens of R. marginata show great behvioural plasticity which might have been shaped by natural selection as an adaptation for conflict resolution. We could show that the potential queens sometimes can predict the upcoming transition and pre-pare themselves accordingly, whereas they can also react to an experimentally created sudden loss of queen by hugely elevating their aggression. The docile queens, on the other hand, maintain their reproductive monopoly by a pheromone, which is essentially a feature of highly eusocial species. But these docile queens have not lost their capability to show aggression and can use that to complement the insufficient concentration of her pheromone. This and the behaviour of potential queens in their establishment phase are strongly reminiscent of typical primitively eusocial species. We conclude that Ropalidia marginata is, perhaps, a particularly advanced primitively eusocial hymenopteran situated on an evolutionary continuum from primitive to highly eusocial species.
7

Determinants Of Behavioural And Reproductive Dominance In The Primitively Eusocial Wasp Ropalidia Marginata

Bang, Alok 07 1900 (has links) (PDF)
In societies where all individuals are reproductively totipotent and yet, at a given time only one of them reproduces, it is interesting to examine the factor(s) that may influence and predict who will be the reproductive. I am investigating various behavioural, morphological and physiological parameters in the primitively eusocial wasp Ropalidia marginata, and their role in determining the current reproductive and her future successors. In several group-living species, especially in primitively eusocial ones, a strong link between behavioural dominance and reproductive dominance is observed. Hence, I am also investigating the possible determinants of behavioural dominance in R. marginata. I have carried out my study on artificially constituted pairs of wasps as well as in natural colonies in laboratory cages, which represent the founding phase and the established phase in the colony cycle, respectively. Chapter 1: Behavioural and Reproductive Dominance in Pairs of R. marginata Age and body size had no effect on behavioural dominance in pairs of R. marginata, whereas prior experience of behavioural dominance affected future dominance status, indicating presence of winner- and loser-effects. Dominance ranks are relatively stable. This is different from what has been found in colonies, where dominance ranks sometimes change on a daily basis. Body size had no effect, whereas age and behavioural dominance had a significant effect on reproductive dominance in pairs, with older individuals and more dominant individuals having a higher probability of becoming the reproductive. Since no relationship was found between age and behavioural dominance, we predict that the underlying mechanisms by which age and behavioural dominance affect reproductive dominance and independent of each other. This study gives a clear indication that age and behavioural dominance are important variables that determine the reproductive individual during the founding phase of the colony. Chapter 2: Comparison of Dominance Indices and Recommendations for their Use When several individuals interact with each other as in colonies, in a differential and sometimes in a preferential manner, it is difficult to attribute dominance ranks to individuals. Dominance indices are employed to simplify these interactions and rank individuals in dominance hierarchies. Since the rationale behind using a particular dominance index is seldom given in behavioural literature, a comparison of three dominance indices was carried out in second part of the thesis. Each index was gauged on how similar are its ranks as compared to other two indices. Indices were also compared based on the number of untied or unique ranks they attributed. The index that gave least number of ties in ranks was assumed to be better than others. In addition to data from R. marginata colonies, I used data from R. cyathiformis colonies (a congeneric species which behaves more like a typical primitively eusocial species), and artificial data sets, to increase variability in the interaction patterns. We found that each of the indices had their own advantages and disadvantages. In species like R. marginata and R. cyathiformis, where only a few pairs show interactions, and among those who do, very few show reversals, Frequency-based Dominance Index (FDI) is the recommended index of choice. Studies like these will help in understanding how dominance indices operate under certain situations before applying them to construct hierarchies. Chapter 3: Behavioural and Reproductive Dominance in Colonies of R. marginata Age does not affect behavioural dominance, whereas winner and loser effects exist in colonies of R. marginata, just as in pairs. When analysed in detail, I found that colonies of R. marginata showed fewer proportion of pairs interacting, and lower frequency/hour/pair of dominance-subordinate interactions as compared to experimentally paired individuals (from 1st chapter). However, the dominance displays and behaviours were much more intense and severe in colonies. After dominance hierarchies are already established in colonies, frequent need to show dominance behaviour may not arise, due to familiarity between interacting individuals. However, since individuals are possibly aware of each others’ strengths due to past interactions, dominance behaviours are much more severe when contests do happen. My results show that there might be some similarities in terms of determinants of behavioural dominance between pairs and colonies, but the expression of behavioural dominance is quite different. From earlier work it was already known that if the queen/reproductive of the colony disappears or is experimentally removed, one of the individuals shows extreme levels of aggression. This individual, referred to as the potential queen (PQ), will go on to become the next queen of the colony. Her behavioural profile, from the emergence till she establishes herself as the next queen have been well studied earlier. What was not known were the factor(s) that determine the identity of the PQ. It was also unclear what happens when the queen as well as the PQ are both removed, simultaneously or in quick succession. To test whether there is a longer reproductive hierarchy in R. marginata, the queen and the first potential queen of a nest were removed. I found that successive potential queens emerged as readily as the first potential queen, and with dominance profiles comparable to the first PQ, indicating that a reproductive hierarchy indeed exists, at least up to five PQ’s. It was also found that these potential queens were acceptable to all other individuals, as there was not a single act of behavioural dominance directed toward any potential queen. It was also observed that all PQs went on to become queens if the previous queen or PQ was not returned. When tested for various morphological, physiological, behavioural and life history traits (factors possibly influencing the position of an individual in the reproductive hierarchy), we found that age is the only variable that emerges as an important predictor of reproductive succession, with older animals having a higher chance to succeed as next queens of the colony, although even age is not an absolute predictor. Unlike in the pairs, in colonies of R. marginata behavioural dominance is not a good predictor of an individual’s ability to be the queen or the potential queens. The four most important findings of my study are: (i) the first demonstration of winner and loser effects in social insects; (ii) the demonstration that behavioural dominance influences reproductive dominance in pairs but not in colonies; (iii) demonstration of a long reproductive queue among individuals of a colony; and (iv) discovering that age is an important predictor of the identity of the queen and the future queens of the colony. I believe these findings will add significantly to our growing knowledge of the social biology of R. marginata. Finally, my work shows that pairs of R. marginata, representing the founding phase of the colony, behave more like a typical primitively eusocial species, whereas colonies which represent the established phase of the colony cycle behave more like highly eusocial species. Finding the characters of two different forms of sociality in the same species in different phases of the colony cycle makes R. marginata an excellent model system to study evolution of eusociality.
8

Colony Founding And The Evolution Of Eusociality In Primitively Eusocial Wasp, Ropalidia Marginata

Shakarad, Mallikarjaun 08 1900 (has links)
Many animals live in societies of varying degrees of organization. Some individuals in these societies seem to sacrifice their own fitness to increase the fitness of some others. Understanding the forces that mould the evolution of such altruistic behaviour has become a dominant theme in modern evolutionary biology. Primitively eusocial polistine wasps provide excellent model systems to study the evolution of altruism as they show high degrees of plasticity in their behaviour. Different individuals in the same population pursue different social strategies such as nesting alpne or nesting in groups. When wasps nest in groups, usually only one individual becomes the egg layer, while die rest assume the role of sterile workers. Why do the workers not become solitary foundresses and rear their own offspring instead of working to rear the brood of another individual? Here I have used the tropical primitively eusocial wasp Ropalidia marginata to explore some factors that might potentially favour the worker strategy over the solitary founding strategy. Workers in multiple foundress nests may benefit by rearing brood more closely related to them than their own offspring would be. However, from previous work on this species it is known that relatedness between sisters is rather low and that workers therefore rear quite distantly related brood. Therefore, I have concentrated on factors other than genetic relatedness that might potentially favour the worker strategy. A total of 145 naturally initiated nests with different numbers of foundresses was monitored over a period of 16 months, and their productivities were compared. Although the total colony productivity increased, the per capita productivity did not increase with increasing foundress numbers. Colonies with larger foundress numbers did not produce significantly heavier progeny and did not produce them significantly faster than colonies with fewer individuals. The conspecific usurpers preferred to usurp single foundress colonies more often than multiple foundress colonies. Therefore, protection from conspecific usurpers might be an advantage of multiple foundress associations. About 10% of the multiple foundress nests experienced queen turnovers. This provides a finite chance to reproduce and gain some individual fitness for workers, at some future point of time. Wasps may not be similar in their reproductive abilities and those who are less fertile might be joining others who are more fertile. Testing such a hypothesis would require that individuals who have chosen to be subordinate cofoundresses in multiple foundress associations are forced to nest alone. During this study a total of 77 nests was monitored. Cofoundresses forced to nest alone had significantly lower productivity than natural solitary foundresses and also queens of multiple foundress nests who were forced to nest alone. This suggested that wasps are not similar either in their reproductive ability or brood rearing ability or both. To ascertain which of the factors was responsible for lower productivity in cofoundresses, productivity of wasps isolated into laboratory cages was compared. There was no significant difference in the productivity of isolated cofoundresses and isolated queens. This suggests that wasps are not subfertile per se but probably differ in their foraging and brood rearing abilities. The certainty with which resources are brought into the nest and therefore, the certainty with which the mean per capita productivity is attained, provides an automatic benefit of group living according to the central limit theorem. This prediction was also tested. The coefficient of variation of mean per capita productivity decreased significantly with increasing foundress numbers. Behavioural observations on another 36 colonies, with different number of adults, showed that the coefficient of variation of food brought to the nest and the rate at which larvae were fed, decreased significantly with increasing number of adults. A computer simulation was used to find out the effect of group size on the variance in feed larva. Assuming that larvae cannot be starved for too long and cannot utilize more than a certain amount of food at a time, the fitness of larvae was found to increase with an increase in the number of adults attending the nest. Previous work on R. marginata has been largely confined to postemergence colonies. An attempt was made to look at and compare social organization in preemergence colonies with that of postemergence colonies. It was found that the egg layer was not the most dominant animal in the well-established preemergence colonies. There were no detectable differences in the social organization of the preemergence colonies (of this study) with that of postemergence colonies of the earlier studies. Perhaps my conclusions drawn from studying preemergence colonies are therefore applicable more widely to the species. It can be concluded that the apparent increased fitness of the worker strategy over solitary foundress strategy does not come from any increase in per capita productivity, but comes instead from (i) the greater predictability with which the mean per capita productivity is attained in larger colonies, (ii) the lower probabilities of usurpation of larger colonies, (iii) queen turnovers that provide opportunities for workers in multiple foundress colonies to gain some direct individual fitness and (iv) the lower brood rearing abilities of workers in multiple foundress nests that make the worker strategy the best of a bad job.
9

Queens And Their Succerssors : The Story Of Power In The Primitively Eusocial Wasp Ropalidia Marginata

Bhadra, Anindita 11 1900 (has links)
Ropalidia marginata is characterized as a primitively eusocial wasp due to the absence of morphological differentiation between the queen and worker castes. Unlike other primitively eusocial wasps, however, the queen in this species is a docile individual, who does not use aggression to regulate worker reproduction, and does not act as the central pacemaker of her colony. However, if the queen dies or is experimentally removed, one of the workers steps up her aggression immensely within minutes, and if the queen is not replaced, she develops her ovaries, reduces aggression and takes over as the new queen of the colony. We call her the potential queen (PQ). When I started my work on R. marginata, two very intriguing questions were demanding to be answered, which had developed from work done by my immediate seniors in the lab. I decided to pursue both of these for my thesis. My work has been enriched by inputs from several collaborators and colleagues - I couldn’t have done all of it by myself. So, henceforth, I will be using the word “we”, instead of the first person singular to describe the work that has gone into this thesis. Question 1: Is there a designated successor to the queen in R. marginata? My senior Sujata P. Kardile has shown in her thesis, that in R. cyathiformis, a primitively eusocial wasp very closely related to R. marginata, the queen is always succeeded by the next most aggressive individual in the colony, and so the PQ is easily predictable in the presence of the queen. However, in R. marginata, the PQ appears to be an unspecialized individual, who cannot be predicted in the presence of the queen by using age, ovarian profile or behaviour as the yardsticks. However, the PQ becomes evident within minutes after queen removal. The swiftness with which the PQ is established led us to believe that perhaps the successor to the queen in R. marginata is known to the wasps, though we cannot identify her in the presence of the queen. We designed an experiment to check for the presence of such a ”cryptic successor” in R. marginata. Our experiments involved splitting a normal, queen-right nest into two halves separated by a wire mesh partition, so that the wasps could not move across the mesh. Earlier we had used this set-up to demonstrate that a PQ always establishes herself on the queen-less fragment of the nest. So, to test if there is a cryptic successor, we allowed a PQ to establish herself on the queen-less fragment, and then exchanged the queen and the PQ (designated as PQ1) between the two sides. There is a 50% probability that the cryptic successor, if present, would be on the queen-less side in the beginning. Then, upon exchange, she should be able to hold her position on the other side easily. On the other hand, if the cryptic successor is first on the queen-right side, then, upon exchange, she should take over as the PQ (PQ2), and PQ1 should not be able to hold her status. The cryptic successor hypothesis had two predictions: (i) the PQ1 would lose to a PQ2 in about half the cases, and (ii) there would never be a PQ3. We obtained a PQ2 in 5 out of 8 cases, and we never had a PQ3. So we could conclude that there is indeed one individual who is the designated successor to the queen in R. marginata. Since we could not identify her in the presence of the queen, we call her the cryptic successor. The cryptic successor did not receive even a single act of aggression from the PQ1, or from any other individual in the colony. Thus we conclude that she is acceptable to all the wasps in the colony. We next used the more sophisticated and rigorous method of network analysis to check if the PQ could be predicted due to some unique position she might be holding in the social network on her colony. Since this was a first study in a primitively eusocial insect using network tools, we began by characterizing the social networks of queen-right and queen-less colonies of R. marginata, and compared them with the R. cyathiformis networks to see how different the R. marginata society is from a typical primitively eusocial one. The R. marginata social networks based on dominant-subordinate interactions were low in their centrality measure as compared to the R. cyathiformis networks. However, in both the species, the queen-less networks were highly centralized, star-shaped networks with the PQs at the centre. Neither the queens, nor the PQs were key individuals in the queen-right colonies, but it is interesting to note that the removal of an insignificant node, the queen, resulted in a major change in the network architecture, converting the de-centralized queen-right network into a highly centralized one. Such centralized star-shaped networks are unique, and to our knowledge, the first ever described, in any social system. When we removed the queen from the data set (in silico removal), the resulting network was similar in centrality to the queen-right networks. We then did a comparative analysis of the positional importance of the PQs of the two species, and tried to see if we could use this as a tool to predict the PQ in the queen-right network. In R. cyathiformis, the PQs had consistently high ranks (mostly rank 2) in the network based on the degree index, while the PQs in R. marginata had random ranks in the hierarchy. However, since the PQs are known not to have unique ranks in the dominance hierarchies, we repeated the analysis using data on all interactions from the Q-PQ exchange experiments described above. Neither the cryptic successors nor the losers occupied any unique ranks in the all interactions networks. Thus the successors in R. marginata are truly cryptic, even in their social networks. Since R. marginata is known to be more evolved than typical primitively eusocial species, it is likely that the queen’s successor is identified by the wasps through some subtle cue like smell, and so we cannot identify her using the methods that are adequate for the identification of the PQ in a typical primitively eusocial species like R. cyathiformis. Question 2: How does the queen signal her presence and reproductive status to her workers or, how do the workers perceive the presence of their queen? The fact that in spite of her docility, the queen in R. marginata manages to maintain complete reproductive monopoly in her colony, gives rise to the obvious question of how she suppresses worker reproduction. The most attractive hypothesis is that she uses a pheromone like queens of highly eusocial species. My senior A. Sumana had shown that the queen pheromone, if present, is not a volatile substance. She also showed that the queen interacts at a very low rate with her workers, and so they cannot possibly perceive her by means of direct interactions. Since the PQ steps up her aggression within minutes of queen removal, we used her as a proxy to know how soon the queen’s absence is felt in the colony. We built a model to delineate the relationship between the decay time of the pheromone (td), the average age of the queen’s signal present with the PQ (ta), and the average realization time (tr); where tr = td − ta. Using Dijkstra’s algorithm, we showed that the queen could interact faster with the PQ by using relay interactions. Then using experimental data from 50 colonies, we obtained a ta of 102.9 minutes. The td was 340 minutes, and so we obtained a tr of 237.1 minutes; which meant that the PQ should not perceive the queen’s absence within 237 minutes of queen removal, if the queen pheromone is transmitted by a relay mechanism. However, from our experimental data, we had obtained a tr of 30 minutes. So we concluded that physical interactions, both direct and indirect were inadequate for the workers to perceive their queen. As we had ruled out physical interactions, we then wanted to check if it is possible that the queen applies her pheromone to the nest material, from where it is perceived by the workers when they walk or sit on the nest, or antennate the nest surface. The “rub abdomen behaviour (RA)” has been observed to be quite typical of R. marginata queens, and is not very common in the workers of the species. RA involves rubbing the ventral side of the tip of the abdomen or dragging it on the nest surface while walking. We thought that the queen might be using this behaviour to apply her pheromone on the nest material. So we characterized this behaviour using focal behaviour sampling, and found that the queen rubs her abdomen on the nest once in every 23 minutes. Since the observed tr is 30 minutes, it is quite likely that the queen uses the rub abdomen behaviour to apply her pheromone on the nest. The next step was to check for the source of the queen pheromone. We looked for glands that open near the base of the sting, and the Dufour’s gland was a good choice, as it is known to be involved in the recognition of egg-laying workers in the honeybees. We performed a bioassay in the blind using the crude extract of the Dufour’s gland (prepared in Ringer’s solution) from the queen. The Dufour’s gland extract of a randomly chosen worker and the solvent were used as controls. We found that the PQ responds to the queen’s Dufour’s gland extract by lowering her aggression to 65% of what she was showing on queen removal and before the application of the extract. However, the PQ did not change her behaviour significantly when the worker’s extract or Ringer’s solution was applied. The PQ’s reduction of aggression on application of the queen’s extract mimicked the reaction of PQ’s when the queen is re-introduced on the nest some time after removal. So we hypothesize that the Dufour’s gland is the source of the queen pheromone (signal) in R. marginata. This thesis has opened up newer questions pertaining to the power of the queen and the intricacies of the succession to power in R. marginata. For example, we need to pursue chemical analyses of the Dufour’s gland extract of R. marginata to have conclusive proof of it’s being the source of the queen pheromone. But that is perhaps suitable topic for my juniors in the lab, who can continue the tradition of beginning with questions opened up by their seniors!
10

Finding the Way Back Home : A study of Spatial Orientation, Navigation and Homing Behaviour in the Social Wasp Ropalidia marginata

Mandal, Souvik January 2017 (has links) (PDF)
For most of the animals, if not all, finding their way to a particular place is crucial for survival. To address this challenge of way-finding, different animals have evolved with different homing strategies. Social hymenopterans like honey bees, ants and wasps are of special interest – foragers of these insects show excellent homing capabilities while having simple neural resources. In this study field, honey bees and ants (desert ants, in particular) are among the most studied animals. Compared to these insects, our understanding on the homing mechanisms of social wasp is rather poor. For my thesis, I have studied homing behaviour of the tropical social wasp Ropalidia marginata, a predator in their foraging habit. To begin with, first I had to know their typical foraging range, which I found to be within about 500 m from their nest. Forager wasps possess a surprisingly well-developed familiarity with their foraging landscape, apparently more intricate than honey bees and desert ants. They acquire this spatial familiarity through flying around the landscape before starting foraging for food. Compared to honey bees and desert ants, this learning period in wasps appears to be much longer – this can be attributed to the much higher density of the tropical landscape in which they have evolved. I have also found that, if needed, they can fly to a distance of about 1.5 km for foraging and can return to their nest even if passively displaced to familiar and unfamiliar places. To return from unfamiliar places, they probably use some sort of searching mechanisms – a skill that they improve with their age. Such searching behaviour is prevalent throughout other hymenopteran insects. I conclude that capability and mechanisms of spatial orientation, navigation and homing in animals are much influenced by their evolutionary origin and the environment in which they have evolved.

Page generated in 0.0751 seconds