• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drilling of high-performance materials: experimental, numerical, and theoretical investigations

Cong, Weilong January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Zhijian Pei / High-performance materials, such as silicon, aerospace stainless steels, titanium alloys, and carbon fiber reinforced plastic (CFRP) composites, have a variety of engineering applications. However, they usually have poor machinability and are classified as hard-to-machine materials. Drilling is one of the important machining processes for these materials. Industries are always under tremendous pressure to meet the ever-increasing demand for lower cost and better quality of the products made from these high-performance materials. Rotary ultrasonic machining (RUM) is a non-traditional machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining. It is a relatively low-cost, environment-benign process that easily fits in the infrastructure of the traditional machining environment. Other advantages of this process include high hole accuracy, superior surface finish, high material removal rate, low tool pressure, and low tool wear rate. The goal of this research is to provide new knowledge of machining these high performance materials with RUM for further improvement in the machined hole quality and decrease in the machining cost. A thorough research in this dissertation has been conducted by experimental, numerical, and theoretical investigations on output variables, including cutting force, torque, surface roughness, tool wear, cutting temperature, material removal rate, edge chipping (for silicon), power consumption (for CFRP), delamination (for CFRP), and feasible regions (for dry machining of CFRP). In this dissertation, an introduction of workpiece materials and RUM are discussed first. After that, two literature reviews on silicon drilling and dry drilling are presented. Then, design of experiment and finite element analysis on edge chipping in RUM of silicon, experimental investigations and finite element analysis on RUM of aerospace stainless steels, an ultrasonic vibration amplitude measurement method and a cutting temperature measurement method for RUM using titanium alloys as workpiece, experimental and theoretical investigations on RUM of CFRP composites, and experimental studies on CFRP/Ti stacks are presented, respectively. Finally, conclusions and contributions on RUM drilling are discussed.
2

Rotary ultrasonic machining of hard-to-machine materials

Churi, Nikhil January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Zhijian Pei / Titanium alloy is one of the most important materials used in major segments of industries such as aerospace, automobile, sporting goods, medical and chemical. Market survey has stated that the titanium shipment in the USA has increased significantly in last two decades, indicating its increased usage. Industries are always under tremendous pressure to meet the ever-increasing demand to lower cost and improve quality of the products manufactured from titanium alloy. Similar to titanium alloys, silicon carbide and dental ceramics are two important materials used in many applications. Rotary ultrasonic machining (RUM) is a non-traditional machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining. It comprises of a tool mounted on a rotary spindle attached to a piezo-electric transducer to produce the rotary and ultrasonic motion. No study has been reported on RUM of titanium alloy, silicon carbide and dental ceramics. The goal of this research was to provide new knowledge of machining these hard-to-machine materials with RUM for further improvements in the machining cost and surface quality. A thorough research has been conducted based on the feasibility study, effects of tool variables, effects of machining variables and wheel wear mechanisms while RUM of titanium alloy. The effects of machining variables (such as spindle speed, feed rate, ultrasonic vibration power) and tool variables (grit size, diamond grain concentration, bond type) have been studied on the output variables (such as cutting force, material removal rate, surface roughness, chipping size) and the wheel wear mechanisms for titanium alloy. Feasibility of machining silicon carbide and dental ceramics is also conducted along with a designed experimental study.

Page generated in 0.0967 seconds