• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drilling of high-performance materials: experimental, numerical, and theoretical investigations

Cong, Weilong January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Zhijian Pei / High-performance materials, such as silicon, aerospace stainless steels, titanium alloys, and carbon fiber reinforced plastic (CFRP) composites, have a variety of engineering applications. However, they usually have poor machinability and are classified as hard-to-machine materials. Drilling is one of the important machining processes for these materials. Industries are always under tremendous pressure to meet the ever-increasing demand for lower cost and better quality of the products made from these high-performance materials. Rotary ultrasonic machining (RUM) is a non-traditional machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining. It is a relatively low-cost, environment-benign process that easily fits in the infrastructure of the traditional machining environment. Other advantages of this process include high hole accuracy, superior surface finish, high material removal rate, low tool pressure, and low tool wear rate. The goal of this research is to provide new knowledge of machining these high performance materials with RUM for further improvement in the machined hole quality and decrease in the machining cost. A thorough research in this dissertation has been conducted by experimental, numerical, and theoretical investigations on output variables, including cutting force, torque, surface roughness, tool wear, cutting temperature, material removal rate, edge chipping (for silicon), power consumption (for CFRP), delamination (for CFRP), and feasible regions (for dry machining of CFRP). In this dissertation, an introduction of workpiece materials and RUM are discussed first. After that, two literature reviews on silicon drilling and dry drilling are presented. Then, design of experiment and finite element analysis on edge chipping in RUM of silicon, experimental investigations and finite element analysis on RUM of aerospace stainless steels, an ultrasonic vibration amplitude measurement method and a cutting temperature measurement method for RUM using titanium alloys as workpiece, experimental and theoretical investigations on RUM of CFRP composites, and experimental studies on CFRP/Ti stacks are presented, respectively. Finally, conclusions and contributions on RUM drilling are discussed.
2

EXTREME-ENVIRONMENT PROTECTION USING MACROMOLECULAR COMPOSITE TECHNOLOGY

Price, Erik Joshua 21 June 2021 (has links)
No description available.
3

High-performance materials in infrastructure: a review of applied life cycle costing and its drivers – the case of fiber-reinforced composites

Ilg, Patrick, Hoehne, Christoph, Guenther, Edeltraud 25 August 2021 (has links)
IIn recent years, an investment bottleneck for public infrastructure has accumulated in many industrial countries. Life cycle costing (LCC) is an appropriate management instrument for long-term and sustainable investment. This article addresses the evaluation of high-performance materials (HPM) using LCC to reduce that investment bottleneck. Our research questions are, first, whether and how LCC can be applied to HPM, second, which drivers are primarily influencing the results of a LCC analysis for HPM, and finally, whether HPM are suitable for infrastructure investments, according to economic, social and environmental criteria. We use a comprehensive literature review to analyze existing case studies that apply LCC to HPM. Our review shows that LCC is applied to HPM for structural applications with different levels of detail and quality. The initial results indicate that total life cycle costs for HPM are on average 10% higher. We urge the optimization of the cost structure of HPM to achieve the same level of life cycle costs as conventional construction materials. Moreover, we argue for a more holistic approach that does not ignore sustainability criteria throughout the life cycle of HPM based on the identified drivers of life cycle costs: external costs, an extended life cycle, the discount rate and the expected service life. Indeed, a screened subsample of eight cases is very competitive, with average total life cycle costs for HPM that are 8.4% lower. We share the belief in a more eco-centric approach and, therefore, demand further research into a societal type of LCC that improves the mechanical properties while not ignoring sustainability criteria for new product systems such as HPM.
4

Effect of temperature on early stage adhesion during TiAlN sliding against Inconel 718 and Stainless steel 316L : High temperature tribology

Ali, Ahsan January 2023 (has links)
High-performance materials such as stainless steels and nickel based super alloys are widely used in demanding applications where high mechanical and thermal properties are required. The applications of super alloys are mainly found in jet engines, power plants and gas turbines demanding high fatigue strength, corrosion and oxidation resistance as well as wear resistant properties. In order to use them, they go through various machining processes such as milling, turning, cutting, polishing etc. until the final product is achieved. Modern manufacturing industries employs various machining tools and technologies to improve the machining process of heat resistant super alloys. However, there are still challenges which needs to be addressed. Among them, adhesive wear of the machining tools is one of the main wear mechanism during the tribological interaction of tool and workpiece, preventing them to achieve the desired quality and surface finish of the end product. Moreover, it damages the tool reducing its lifecycle and in return, increasing the production cost. Among the cutting tools tungsten carbide (WC/Co) tools coated with TiAlN coating due to their good high temperature performance are extensively used. Nonetheless, these coatings still face issue like adhesive wear, abrasion, oxidation at higher temperature damaging the tools and subsequent machining. Therefore, it is imperative to understand the initiation mechanism of adhesive wear during the tribological interaction of super alloys and coated cutting tool material. In this research work, the tribological response of two coatings deposited by physical vapour deposition (PVD), having the composition Ti60Al40N and Ti40Al60N have been studied against two super alloys material, i.e. Inconel 718 and stainless steel 316L. A high temperature SRV (Schwingung (Oscillating), Reibung (Friction), Verschleiß (Wear)) reciprocation friction and wear test set up was employed to investigate the friction behaviour, wear rate and dominant wear mechanisms.  For Ti60Al40N coating, the experimental results revealed that generally, friction increases in case of sliding against Inconel 718 up to 400 °C and drops at 760 °C. A high wear volume at room temperature and a decrease to a minimum at 760 °C has been observed for Inconel 718. On the other side, Stainless steel 316L (SS 316L) faces a continuous rise in friction coefficient with highest value at 760 °C during sliding against Ti60Al40N coating. Wear is highest at 400 °C for SS 316L pin. The worn surfaces shows that both workpiece materials experience increase in material transfer due to adhesive wear with rise in temperature. At 400 °C, adhesion is the primary wear mechanism for both workpiece materials. A further rise in temperature to 760 °C promotes the adhesive wear through oxides formation on both material surfaces.  Similarly, Ti40Al60N coating shows the same friction behaviour with change in average steady state friction values for both material of Inconel 718 and SS 316L. Both workpiece materials responds in a similar way to wear volume loss, i.e. lowest at room temperature and highest at 760 °C. For Inconel 718, transfer of coating constituents on to the Inconel 718 pin surface was detected and associated with coating rupture and peeling, exacerbating with rise in temperature. Adhesion, abrasion, and oxidation are primary wear mechanisms at 400 °C and 760 °C. For SS 316L, coating transfer only happen at 400 °C. No damage of coating at 40 °C, a complete damage at 400 °C, and formation of dense porous oxides layers at 760 °C have been noticed. At 400 °C, adhesion, abrasion, and chipping while at 760 °C, adhesion, three body abrasion, ploughing and oxidation are the main wear mechanisms.

Page generated in 0.0844 seconds