• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Results in Stability, Control, and Estimation of Fractional Order Systems

Koh, Bong Su 2011 May 1900 (has links)
A review of recent literature and the research effort underlying this dissertation indicates that fractional order differential equations have significant potential to advance dynamical system methods broadly. Particular promise exists in the area of control and estimation, even for systems where fractional order models do not arise “naturally”. This dissertation is aimed at further building of the base methodology with a focus on robust feedback control and state estimation. By setting the mathematical foundation with the fractional derivative Caputo definition, we can expand the concept of the fractional order calculus in a way that enables us to build corresponding controllers and estimators in the state-space form. For the robust eigenstructure assignment, we first examine the conditioning problem of the closed-loop eigenvalues and stability robustnesss criteria for the fractional order system, and we find a unique application of an n-dimensional rotation algorithm developed by Mortari, to solve the robust eigenstructure assignment problem in a novel way. In contradistinction to the existing Fractional Kalman filter developed by using Gru ̈ndwald-Letnikov definition, the new Fractional Kalman filter that we establish by utilizing Caputo definition and our algorithms provide us with powerful means for solving practical state estimation problems for fractional order systems.
2

A Generalized Acceptance Urn Model

Wagner, Kevin P 05 April 2010 (has links)
An urn contains two types of balls: p "+t" balls and m "-s" balls, where t and s are positive real numbers. The balls are drawn from the urn uniformly at random without replacement until the urn is empty. Before each ball is drawn, the player decides whether to accept the ball or not. If the player opts to accept the ball, then the payoff is the weight of the ball drawn, gaining t dollars if a "+t" ball is drawn, or losing s dollars if a "-s" ball is drawn. We wish to maximize the expected gain for the player. We find that the optimal acceptance policies are similar to that of the original acceptance urn of Chen et al. with s=t=1. We show that the expected gain function also shares similar properties to those shown in that work, and note the important properties that have geometric interpretations. We then calculate the expected gain for the urns with t/s rational, using various methods, including rotation and reflection. For the case when t/s is irrational, we use rational approximation to calculate the expected gain. We then give the asymptotic value of the expected gain under various conditions. The problem of minimal gain is then considered, which is a version of the ballot problem. We then consider a Bayesian approach for the general urn, for which the number of balls n is known while the number of "+t" balls, p, is unknown. We find formulas for the expected gain for the random acceptance urn when the urns with n balls are distributed uniformly, and find the asymptotic value of the expected gain for any s and t. Finally, we discuss the probability of ruin when an optimal strategy is used for the (m,p;s,t) urn, solving the problem with s=t=1. We also show that in general, when the initial capital is large, ruin is unlikely. We then examine the same problem with the random version of the urn, solving the problem with s=t=1 and an initial prior distribution of the urns containing n balls that is uniform.

Page generated in 0.3014 seconds