• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Multi-step Reaction Model for Stratified-Charge Combustion in Wave Rotors

Elharis, Tarek M. January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Testing of a wave-rotor constant-volume combustor (WRCVC) showed the viability of the application of wave rotors as a pressure gain combustor. The aero-thermal design of the WRCVC rig had originally been performed with a time-dependent, one-dimensional model which applies a single-step reaction model for the combustion process of the air-fuel mixture. That numerical model was validated with experimental data with respect of matching the flame propagation speed and the pressure traces inside the passages of the WRCVC. However, the numerical model utilized a single progress variable representing the air-fuel mixture, which assumes that fuel and air are perfectly mixed with a uniform concentration; thus, limiting the validity of the model. In the present work, a two-step reaction model is implemented in the combustion model with four species variables: fuel, oxidant, intermediate and product. This combustion model is developed for a more detailed representation for the combustion process inside the wave rotor. A two-step reaction model presented a more realistic representation for the stratified air-fuel mixture charges in the WRCVC; additionally it shows more realistic modeling for the partial combustion process for rich fuel-air mixtures. The combustion model also accounts for flammability limits to exert flame extinction for non-flammable mixtures. The combustion model applies the eddy-breakup model where the reaction rate is influenced by the turbulence time scale. The experimental data currently available from the initial testing of the WRCVC rig is utilized to calibrate the model to determine the parameters, which are not directly measured and no directly related practice available in the literature. A prediction of the apparent ignition the location inside the passage is estimated by examination of measurements from the on-rotor instrumentations. The incorporation of circumferential leakage (passage-to-passage), and stand-off ignition models in the numerical model, contributed towards a better match between predictions and experimental data. The thesis also includes a comprehensive discussion of the governing equations used in the numerical model. The predictions from the two-step reaction model are validated using experimental data from the WRCVC for deflagrative combustion tests. The predictions matched the experimental data well. The predicted pressure traces are compared with the experimentally measured pressures in the passages. The flame propagation along the passage is also evaluated with ion probes data and the predicted reaction zone.
2

Coupled Dynamic Analysis of Flow in the Inlet Section of a Wave Rotor Constant Volume Combustor

Smith, Keith Cameron 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A wave rotor constant volume combustor (WRCVC) was designed and built as a collaborative work of Rolls Royce LibertyWorks, Indiana University-Purdue University at Indianapolis (IUPUI), and Purdue University, and ran experimental tests at Purdue's Zucrow Laboratories in 2009. Instrumentation of the WRCVC rig inlet flow included temperature and pressure transducers upstream of the venturi and at the fuel delivery plane. Other instrumentation included exhaust pressures and temperatures. In addition, ion sensors, dynamic pressure sensors, and accelerometers were used to instrument the rotating hardware. The rig hardware included inlet guide vanes directly in front of the rotating hardware, which together with concern for damage potential, prevented use of any pressure transducers at the entrance to the rotor. For this reason, a complete understanding of the conditions at the WRCVC inlet is unavailable, requiring simulations of the WRCVC to estimate the inlet pressure at a specific operating condition based on airflow. The operation of a WRCVC rig test is a sequence of events over a short time span. These events include introduction of the main air flow followed by time-sequenced delivery of fuel, lighting of the ignition source, and the combustion sequence. The fast changing conditions in the rig inlet hardware make necessary a time-dependent computation of the rig inlet section in order to simulate the overall rig operation. The chosen method for computing inlet section temperature and pressure was a time-dependent lumped volume model of the inlet section hardware, using a finite difference modified Euler predictor-corrector method for computing the continuity and energy equations. This is coupled with perfect gas prediction of venturi air and fuel flow rates, pressure drag losses at the fuel nozzles, pressure losses by mass addition of the fuel or nitrogen purge, friction losses at the inlet guide vanes, and a correlation of the non-dimensional flow characteristics of the WRCVC. The flow characteristics of the WRCVC are computed by varying the non-dimensional inlet stagnation pressure and the WRCVC's operational conditions, assuming constant rotational speed and inlet stagnation temperature. This thesis documents the creation of a computer simulation of the entire WRCVC rig, to understand the pressure losses in the inlet system and the dynamic coupling of the inlet section and the WRCVC, so that an accurate prediction of the WRCVC rotor inlet conditions can be computed. This includes the computational development of the WRCVC upstream rig dynamic model, the background behind supporting computations, and results for one test sequence. The computations provide a clear explanation of why the pressures at the rotor inlet differ so much from the upstream measured values. The pressure losses correlate very well with the computer predictions and the dynamic response tracks well with the estimation of measured airflow. A simple Fortran language computer program listing is included, which students can use to simulate charging or discharging of a container.
3

Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor

Chinnathambi, Prasanna 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A constant-volume combustor is used to investigate the ignition initiated by a traversing jet of reactive hot gas, in support of combustion engine applications that include novel wave-rotor constant-volume combustion gas turbines and pre-chamber IC engines. The hot-jet ignition constant-volume combustor rig at the Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) was used for this study. Lean premixed combustible mixture in a rectangular cuboid constant-volume combustor is ignited by a hot-jet traversing at different fixed speeds. The hot jet is issued via a converging nozzle from a cylindrical pre-chamber where partially combusted products of combustion are produced by spark- igniting a rich ethylene-air mixture. The main constant-volume combustor (CVC) chamber uses methane-air, hydrogen-methane-air and ethylene-air mixtures in the lean equivalence ratio range of 0.8 to 0.4. Ignition delay times and ignitability of these combustible mixtures as affected by jet traverse speed, equivalence ratio, and fuel type are investigated in this study.
4

Numerical study of hot jet ignition of hydrocarbon-air mixtures in a constant-volume combustor

Karimi, Abdullah January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ignition of a combustible mixture by a transient jet of hot reactive gas is important for safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel constant-volume combustors. The present work is a numerical study of the hot-jet ignition process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. The mixing of hot jet with cold mixture in the main chamber is first studied using non-reacting simulations. The stationary and traversing hot jets of combustion products from a pre-chamber is injected through a converging nozzle into the main CVC chamber containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and hydrogen. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-flame interaction is seen to significantly increase the overall reaction rate due to baroclinic vorticity generation, flame area increase, stirring of non-uniform density regions, the resulting mixing, and shock compression. The less easily ignitable methane mixture is found to show higher ignition delay time compared to slower initial reaction and greater dependence on shock interaction than propane and ethylene. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive. Inclusion of minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for methane mixture in the main chamber. Reaction pathways analysis shows that ignition delay and combustion progress process are entirely different for hybrid turbulent-kinetic scheme and kinetics-only scheme.

Page generated in 0.059 seconds