• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localised routing algorithms in communication networks with Quality of Service constraints : performance evaluation and enhancement of new localised routing approaches to provide Quality of Service for computer and communication networks

Mohammad, Abdulbaset H. T. January 2010 (has links)
The Quality of Service (QoS) is a profound concept which is gaining increasing attention in the Internet industry. Best-effort applications are now no longer acceptable in certain situations needing high bandwidth provisioning, low loss and streaming of multimedia applications. New emerging multimedia applications are requiring new levels of quality of services beyond those supported by best-effort networks. Quality of service routing is an essential part in any QoS architecture in communication networks. QoS routing aims to select a path among the many possible choices that has sufficient resources to accommodate the QoS requirements. QoS routing can significantly improve the network performance due to its awareness of the network QoS state. Most QoS routing algorithms require maintenance of the global network's state information to make routing decisions. Global state information needs to be periodically exchanged among routers since the efficiency of a routing algorithm depends on link-state information accuracy. However, most QoS routing algorithms suffer from scalability due to the high communication overhead and the high computation effort associated with maintaining accurate link state information and distributing global state information to each node in the network. The ultimate goal of this thesis is to contribute towards enhancing the scalability of QoS routing algorithms. Towards this goal, the thesis is focused on Localised QoS routing algorithms proposed to overcome the problems of using global network state information. Using such an approach, the source node makes routing decisions based on the local state information for each node in the path. Localised QoS routing algorithms avoid the problems associated in the global network state, like high communication and processing overheads. In Localised QoS routing algorithms each source node maintains a predetermined set of candidate paths for each destination and avoids the problems associated with the maintenance of a global network state by using locally collected flow statistics and flow blocking probabilities.
2

New quality of service routing algorithms based on local state information : the development and performance evaluation of new bandwidth-constrained and delay-constrained quality of service routing algorithms based on localized routing strategies

Aldosari, Fahd M. January 2011 (has links)
The exponential growth of Internet applications has created new challenges for the control and administration of large-scale networks, which consist of heterogeneous elements under dynamically changing traffic conditions. These emerging applications need guaranteed service levels, beyond those supported by best-effort networks, to deliver the intended services to the end user. Several models have been proposed for a Quality of Service (QoS) framework that can provide the means to transport these services. It is desirable to find efficient routing strategies that can meet the strict routing requirements of these applications. QoS routing is considered as one of the major components of the QoS framework in communication networks. In QoS routing, paths are selected based upon the knowledge of resource availability at network nodes and the QoS requirements of traffic. Several QoS routing schemes have been proposed that differ in the way they gather information about the network state and the way they select paths based on this information. The biggest downside of current QoS routing schemes is the frequent maintenance and distribution of global state information across the network, which imposes huge communication and processing overheads. Consequently, scalability is a major issue in designing efficient QoS routing algorithms, due to the high costs of the associated overheads. Moreover, inaccuracy and staleness of global state information is another problem that is caused by relatively long update intervals, which can significantly deteriorate routing performance. Localized QoS routing, where source nodes take routing decisions based solely on statistics collected locally, was proposed relatively recently as a viable alternative to global QoS routing. It has shown promising results in achieving good routing performance, while at the same time eliminating many scalability related problems. In localized QoS routing each source-destination pair needs to determine a set of candidate paths from which a path will be selected to route incoming flows. The goal of this thesis is to enhance the scalability of QoS routing by investigating and developing new models and algorithms based on the localized QoS routing approach. For this thesis, we have extensively studied the localized QoS routing approach and demonstrated that it can achieve a higher routing performance with lower overheads than global QoS routing schemes. Existing localized routing algorithms, Proportional Sticky Routing (PSR) and Credit-Based Routing (CBR), use the blocking probability of candidate paths as the criterion for selecting routing paths based on either flow proportions or a crediting mechanism, respectively. Routing based on the blocking probability of candidate paths may not always reflect the most accurate state of the network. This has motivated the search for alternative localized routing algorithms and to this end we have made the following contributions. First, three localized bandwidth-constrained QoS routing algorithms have been proposed, two are based on a source routing strategy and the third is based on a distributed routing strategy. All algorithms utilize the quality of links rather than the quality of paths in order to make routing decisions. Second, a dynamic precautionary mechanism was used with the proposed algorithms to prevent candidate paths from reaching critical quality levels. Third, a localized delay-constrained QoS routing algorithm was proposed to provide routing with an end-to-end delay guarantee. We compared the performance of the proposed localized QoS routing algorithms with other localized and global QoS routing algorithms under different network topologies and different traffic conditions. Simulation results show that the proposed algorithms outperform the other algorithms in terms of routing performance, resource balancing and have superior computational complexity and scalability features.
3

New quality of service routing algorithms based on local state information. The development and performance evaluation of new bandwidth-constrained and delay-constrained quality of service routing algorithms based on localized routing strategies.

Aldosari, Fahd M. January 2011 (has links)
The exponential growth of Internet applications has created new challenges for the control and administration of large-scale networks, which consist of heterogeneous elements under dynamically changing traffic conditions. These emerging applications need guaranteed service levels, beyond those supported by best-effort networks, to deliver the intended services to the end user. Several models have been proposed for a Quality of Service (QoS) framework that can provide the means to transport these services. It is desirable to find efficient routing strategies that can meet the strict routing requirements of these applications. QoS routing is considered as one of the major components of the QoS framework in communication networks. In QoS routing, paths are selected based upon the knowledge of resource availability at network nodes and the QoS requirements of traffic. Several QoS routing schemes have been proposed that differ in the way they gather information about the network state and the way they select paths based on this information. The biggest downside of current QoS routing schemes is the frequent maintenance and distribution of global state information across the network, which imposes huge communication and processing overheads. Consequently, scalability is a major issue in designing efficient QoS routing algorithms, due to the high costs of the associated overheads. Moreover, inaccuracy and staleness of global state information is another problem that is caused by relatively long update intervals, which can significantly deteriorate routing performance. Localized QoS routing, where source nodes take routing decisions based solely on statistics collected locally, was proposed relatively recently as a viable alternative to global QoS routing. It has shown promising results in achieving good routing performance, while at the same time eliminating many scalability related problems. In localized QoS routing each source¿destination pair needs to determine a set of candidate paths from which a path will be selected to route incoming flows. The goal of this thesis is to enhance the scalability of QoS routing by investigating and developing new models and algorithms based on the localized QoS routing approach. For this thesis, we have extensively studied the localized QoS routing approach and demonstrated that it can achieve a higher routing performance with lower overheads than global QoS routing schemes. Existing localized routing algorithms, Proportional Sticky Routing (PSR) and Credit-Based Routing (CBR), use the blocking probability of candidate paths as the criterion for selecting routing paths based on either flow proportions or a crediting mechanism, respectively. Routing based on the blocking probability of candidate paths may not always reflect the most accurate state of the network. This has motivated the search for alternative localized routing algorithms and to this end we have made the following contributions. First, three localized bandwidth-constrained QoS routing algorithms have been proposed, two are based on a source routing strategy and the third is based on a distributed routing strategy. All algorithms utilize the quality of links rather than the quality of paths in order to make routing decisions. Second, a dynamic precautionary mechanism was used with the proposed algorithms to prevent candidate paths from reaching critical quality levels. Third, a localized delay-constrained QoS routing algorithm was proposed to provide routing with an end-to-end delay guarantee. We compared the performance of the proposed localized QoS routing algorithms with other localized and global QoS routing algorithms under different network topologies and different traffic conditions. Simulation results show that the proposed algorithms outperform the other algorithms in terms of routing performance, resource balancing and have superior computational complexity and scalability features. / Umm AlQura University, Saudi Arabia

Page generated in 0.0971 seconds