• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localized quality of service routing algorithms for communication networks : the development and performance evaluation of some new localized approaches to providing quality of service routing in flat and hierarchical topologies for computer networks

Alzahrani, Ahmed S. January 2009 (has links)
Quality of Service (QoS) routing considered as one of the major components of the QoS framework in communication networks. The concept of QoS routing has emerged from the fact that routers direct traffic from source to destination, depending on data types, network constraints and requirements to achieve network performance efficiency. It has been introduced to administer, monitor and improve the performance of computer networks. Many QoS routing algorithms are used to maximize network performance by balancing traffic distributed over multiple paths. Its major components include bandwidth, delay, jitter, cost, and loss probability in order to measure the end users' requirements, optimize network resource usage and balance traffic load. The majority of existing QoS algorithms require the maintenance of the global network state information and use it to make routing decisions. The global QoS network state needs to be exchanged periodically among routers since the efficiency of a routing algorithm depends on the accuracy of link-state information. However, most of QoS routing algorithms suffer from scalability problems, because of the high communication overhead and the high computation effort associated with marinating and distributing the global state information to each node in the network. The goal of this thesis is to contribute to enhancing the scalability of QoS routing algorithms. Motivated by this, the thesis is focused on localized QoS routing that is proposed to achieve QoS guarantees and overcome the problems of using global network state information such as high communication overhead caused by frequent state information updates, inaccuracy of link-state information for large QoS state update intervals and the route oscillating due to the view of state information. Using such an approach, the source node makes its own routing decisions based on the information that is local to each node in the path. Localized QoS routing does not need the global network state to be exchanged among network nodes because it infers the network state and avoids all the problems associated with it, like high communication and processing overheads and oscillating behaviour. In localized QoS routing each source node is required to first determine a set of candidate paths to each possible destination. In this thesis we have developed localized QoS routing algorithms that select a path based on its quality to satisfy the connection requirements. In the first part of the thesis a localized routing algorithm has been developed that relies on the average residual bandwidth that each path can support to make routing decisions. In the second part of the thesis, we have developed a localized delay-based QoS routing (DBR) algorithm which relies on a delay constraint that each path satisfies to make routing decisions. We also modify credit-based routing (CBR) so that this uses delay instead of bandwidth. Finally, we have developed a localized QoS routing algorithm for routing in two levels of a hierarchal network and this relies on residual bandwidth to make routing decisions in a hierarchical network like the internet. We have compared the performance of the proposed localized routing algorithms with other localized and global QoS routing algorithms under different ranges of workloads, system parameters and network topologies. Simulation results have indicated that the proposed algorithms indeed outperform algorithms that use the basics of schemes that currently operate on the internet, even for a small update interval of link state. The proposed algorithms have also reduced the routing overhead significantly and utilize network resources efficiently.
2

Localised Credit Based QoS Routing.

Alabbad, Saad H., Woodward, Mike E. January 2006 (has links)
No / Localized Quality of Service (QoS) routing has recently been proposed as a viable alternative approach to traditional QoS routing algorithms that use global state information. In this approach, problems associated with maintaining global state information and the staleness of such information are avoided by having the source nodes to infer the network QoS state based on flow blocking statistics collected locally, and perform flow routing using this localized view of the network QoS state . In this paper we introduce a credit based routing algorithm (cbr) which is a simple yet effective localized QoS routing algorithm. We compare its performance against the localized proportional sticky routing (psr) algorithm same time complexity. using different types of network topologies, QoS requirements and traffic patterns and under a wide range of traffic loads. Extensive simulations show that our algorithm outperforms the psr algorithm with the same time complexity.
3

New quality of service routing algorithms based on local state information : the development and performance evaluation of new bandwidth-constrained and delay-constrained quality of service routing algorithms based on localized routing strategies

Aldosari, Fahd M. January 2011 (has links)
The exponential growth of Internet applications has created new challenges for the control and administration of large-scale networks, which consist of heterogeneous elements under dynamically changing traffic conditions. These emerging applications need guaranteed service levels, beyond those supported by best-effort networks, to deliver the intended services to the end user. Several models have been proposed for a Quality of Service (QoS) framework that can provide the means to transport these services. It is desirable to find efficient routing strategies that can meet the strict routing requirements of these applications. QoS routing is considered as one of the major components of the QoS framework in communication networks. In QoS routing, paths are selected based upon the knowledge of resource availability at network nodes and the QoS requirements of traffic. Several QoS routing schemes have been proposed that differ in the way they gather information about the network state and the way they select paths based on this information. The biggest downside of current QoS routing schemes is the frequent maintenance and distribution of global state information across the network, which imposes huge communication and processing overheads. Consequently, scalability is a major issue in designing efficient QoS routing algorithms, due to the high costs of the associated overheads. Moreover, inaccuracy and staleness of global state information is another problem that is caused by relatively long update intervals, which can significantly deteriorate routing performance. Localized QoS routing, where source nodes take routing decisions based solely on statistics collected locally, was proposed relatively recently as a viable alternative to global QoS routing. It has shown promising results in achieving good routing performance, while at the same time eliminating many scalability related problems. In localized QoS routing each source-destination pair needs to determine a set of candidate paths from which a path will be selected to route incoming flows. The goal of this thesis is to enhance the scalability of QoS routing by investigating and developing new models and algorithms based on the localized QoS routing approach. For this thesis, we have extensively studied the localized QoS routing approach and demonstrated that it can achieve a higher routing performance with lower overheads than global QoS routing schemes. Existing localized routing algorithms, Proportional Sticky Routing (PSR) and Credit-Based Routing (CBR), use the blocking probability of candidate paths as the criterion for selecting routing paths based on either flow proportions or a crediting mechanism, respectively. Routing based on the blocking probability of candidate paths may not always reflect the most accurate state of the network. This has motivated the search for alternative localized routing algorithms and to this end we have made the following contributions. First, three localized bandwidth-constrained QoS routing algorithms have been proposed, two are based on a source routing strategy and the third is based on a distributed routing strategy. All algorithms utilize the quality of links rather than the quality of paths in order to make routing decisions. Second, a dynamic precautionary mechanism was used with the proposed algorithms to prevent candidate paths from reaching critical quality levels. Third, a localized delay-constrained QoS routing algorithm was proposed to provide routing with an end-to-end delay guarantee. We compared the performance of the proposed localized QoS routing algorithms with other localized and global QoS routing algorithms under different network topologies and different traffic conditions. Simulation results show that the proposed algorithms outperform the other algorithms in terms of routing performance, resource balancing and have superior computational complexity and scalability features.
4

New quality of service routing algorithms based on local state information. The development and performance evaluation of new bandwidth-constrained and delay-constrained quality of service routing algorithms based on localized routing strategies.

Aldosari, Fahd M. January 2011 (has links)
The exponential growth of Internet applications has created new challenges for the control and administration of large-scale networks, which consist of heterogeneous elements under dynamically changing traffic conditions. These emerging applications need guaranteed service levels, beyond those supported by best-effort networks, to deliver the intended services to the end user. Several models have been proposed for a Quality of Service (QoS) framework that can provide the means to transport these services. It is desirable to find efficient routing strategies that can meet the strict routing requirements of these applications. QoS routing is considered as one of the major components of the QoS framework in communication networks. In QoS routing, paths are selected based upon the knowledge of resource availability at network nodes and the QoS requirements of traffic. Several QoS routing schemes have been proposed that differ in the way they gather information about the network state and the way they select paths based on this information. The biggest downside of current QoS routing schemes is the frequent maintenance and distribution of global state information across the network, which imposes huge communication and processing overheads. Consequently, scalability is a major issue in designing efficient QoS routing algorithms, due to the high costs of the associated overheads. Moreover, inaccuracy and staleness of global state information is another problem that is caused by relatively long update intervals, which can significantly deteriorate routing performance. Localized QoS routing, where source nodes take routing decisions based solely on statistics collected locally, was proposed relatively recently as a viable alternative to global QoS routing. It has shown promising results in achieving good routing performance, while at the same time eliminating many scalability related problems. In localized QoS routing each source¿destination pair needs to determine a set of candidate paths from which a path will be selected to route incoming flows. The goal of this thesis is to enhance the scalability of QoS routing by investigating and developing new models and algorithms based on the localized QoS routing approach. For this thesis, we have extensively studied the localized QoS routing approach and demonstrated that it can achieve a higher routing performance with lower overheads than global QoS routing schemes. Existing localized routing algorithms, Proportional Sticky Routing (PSR) and Credit-Based Routing (CBR), use the blocking probability of candidate paths as the criterion for selecting routing paths based on either flow proportions or a crediting mechanism, respectively. Routing based on the blocking probability of candidate paths may not always reflect the most accurate state of the network. This has motivated the search for alternative localized routing algorithms and to this end we have made the following contributions. First, three localized bandwidth-constrained QoS routing algorithms have been proposed, two are based on a source routing strategy and the third is based on a distributed routing strategy. All algorithms utilize the quality of links rather than the quality of paths in order to make routing decisions. Second, a dynamic precautionary mechanism was used with the proposed algorithms to prevent candidate paths from reaching critical quality levels. Third, a localized delay-constrained QoS routing algorithm was proposed to provide routing with an end-to-end delay guarantee. We compared the performance of the proposed localized QoS routing algorithms with other localized and global QoS routing algorithms under different network topologies and different traffic conditions. Simulation results show that the proposed algorithms outperform the other algorithms in terms of routing performance, resource balancing and have superior computational complexity and scalability features. / Umm AlQura University, Saudi Arabia
5

Enhanced fault recovery methods for protected traffic services in GMPLS networks

Calle Ortega, Eusebi 07 May 2004 (has links)
Les noves tecnologies a la xarxa ens permeten transportar, cada cop més, grans volums d' informació i trànsit de xarxa amb diferents nivells de prioritat. En aquest escenari, on s'ofereix una millor qualitat de servei, les conseqüències d'una fallada en un enllaç o en un node esdevenen més importants. Multiprotocol Lavel Switching (MPLS), juntament amb l'extensió a MPLS generalitzat (GMPLS), proporcionen mecanismes ràpids de recuperació de fallada establint camins, Label Switch Path (LSPs), redundants per ser utilitzats com a camins alternatius. En cas de fallada podrem utilitzar aquests camins per redireccionar el trànsit. El principal objectiu d'aquesta tesi ha estat millorar alguns dels actuals mecanismes de recuperació de fallades MPLS/GMPLS, amb l'objectiu de suportar els requeriments de protecció dels serveis proporcionats per la nova Internet. Per tal de fer aquesta avaluació s'han tingut en compte alguns paràmetres de qualitat de protecció com els temps de recuperació de fallada, les pèrdues de paquets o el consum de recursos.En aquesta tesi presentem una completa revisió i comparació dels principals mètodes de recuperació de fallada basats en MPLS. Aquest anàlisi inclou els mètodes de protecció del camí (backups globals, backups inversos i protecció 1+1), els mètodes de protecció locals i els mètodes de protecció de segments. També s'ha tingut en compte l'extensió d'aquests mecanismes a les xarxes òptiques mitjançant el pla de control proporcionat per GMPLS.En una primera fase d'aquest treball, cada mètode de recuperació de fallades és analitzat sense tenir en compte restriccions de recursos o de topologia. Aquest anàlisi ens dóna una primera classificació dels millors mecanismes de protecció en termes de pèrdues de paquets i temps de recuperació. Aquest primer anàlisi no és aplicable a xarxes reals. Per tal de tenir en compte aquest nou escenari, en una segona fase, s'analitzen els algorismes d'encaminament on sí tindrem en compte aquestes limitacions i restriccions de la xarxa. Es presenten alguns dels principals algorismes d'encaminament amb qualitat de servei i alguna de les principals propostes d'encaminament per xarxes MPLS. La majoria dels actual algorismes d'encaminament no tenen en compte l'establiment de rutes alternatives o utilitzen els mateixos objectius per seleccionar els camins de treball i els de protecció. Per millorar el nivell de protecció introduïm i formalitzem dos nous conceptes: la Probabilitat de fallada de la xarxa i l'Impacte de fallada. Un anàlisi de la xarxa a nivell físic proporciona un primer element per avaluar el nivell de protecció en termes de fiabilitat i disponibilitat de la xarxa. Formalitzem l'impacte d'una fallada, quant a la degradació de la qualitat de servei (en termes de retard i pèrdues de paquets). Expliquem la nostra proposta per reduir la probabilitat de fallada i l'impacte de fallada. Per últim fem una nova definició i classificació dels serveis de xarxa segons els valors requerits de probabilitat de fallada i impacte.Un dels aspectes que destaquem dels resultats d'aquesta tesi és que els mecanismes de protecció global del camí maximitzen la fiabilitat de la xarxa, mentre que les tècniques de protecció local o de segments de xarxa minimitzen l'impacte de fallada. Per tant podem assolir mínim impacte i màxima fiabilitat aplicant protecció local a tota la xarxa, però no és una proposta escalable en termes de consum de recursos. Nosaltres proposem un mecanisme intermig, aplicant protecció de segments combinat amb el nostre model d'avaluació de la probabilitat de fallada. Resumint, aquesta tesi presenta diversos mecanismes per l'anàlisi del nivell de protecció de la xarxa. Els resultats dels models i mecanismes proposats milloren la fiabilitat i minimitzen l'impacte d'una fallada en la xarxa. / New network technology enables increasingly higher volumes of information to be carried. Various types of mission-critical, higher-priority traffic are now transported over these networks. In this scenario, when offering better quality of service, the consequences of a fault in a link or node become more pronounced. Multiprotocol Label Switching (MPLS) and the extended Generalized MPLS (GMPLS) provide fast mechanisms for recovery from failures by establishing redundant Label Switch Paths as backup paths. With these backups, traffic can always be redirected in case of failure. The main objective of this thesis is to improve some of the current MPLS/GMPLS fault recovery methods, in order to support the protection requirements of the new Internet services. Some parameters, such as fault recovery time, packet loss or resource consumption, all within the scope of this quality of protection, are considered. In this thesis a review and detailed comparison of the MPLS fault recovery methods are presented. Path protection methods (global backups, reverse backups and 1+1 methods), as well as segment protection and local methods are included in this analysis. The extension of these mechanisms to optical networks using GMPLS control plane is also taken into account.In the first phase MPLS fault recovery methods are analyzed without taking into account resource or network topology constraints. This analysis reported a first classification of the best protection methods in terms of packet loss and recovery time. This first analysis cannot be applied to real networks. In real networks, bandwidth or network topology constraints can force a change in the a priori optimal protection choice. In this new scenario, current routing algorithms must be analyzed. The main aspects of the QoS routing methods are introduced, and some of these mechanisms are described and compared. QoS routing algorithms do not include protection as a main objective and, moreover, the same QoS objectives for selecting the working path are used for selecting the backup path. In order to evaluate the quality of protection, two novel concepts are introduced and analyzed: the network failure probability and the failure impact. The physical network provides an initial value of the network protection level in terms of network reliability and availability. A proposal to evaluate network reliability is introduced, and a formulation to calculate the failure impact (the QoS degradation in terms of packet loss and delay) is presented. A proposal to reduce the failure probability and failure impact as well as the enhancement of some current routing algorithms in order to achieve better protection are explained. A review of the traffic services protection requirements and a new classification, based on the failure probability and failure impact values, is also provided in this work.Results show that path protection schemes improve network reliability. Segment/local protection schemes reduce the network failure impact. Minimum impact with maximum reliability can be achieved using local protection throughout the entire network. However, it is not scalable in terms of resource consumption. In this case our failure probability evaluation model can be used to minimize the required resources. Results demonstrate the reduction of the failure impact combining segment protection and our network reliability evaluation model in different network scenarios.In summary, an in-depth analysis is carried out and a formulation to evaluate the network protection level is presented. This evaluation is based on network reliability maximization and failure impact reduction in terms of QoS degradation. A scalable proposal in terms of resource consumption, detailed and experimentally analyzed, offers the required level of protection in different network scenarios for different traffic services.

Page generated in 0.1012 seconds