• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of Rtg2P Functional Domain Involved in Retrograde Signaling in Saccharomyces Cerevisiae

Jiang, Jian 06 May 2017 (has links)
In S. cerevisiae, the accumulation of dysfunctional mitochondria activates a retrograde signal that is mediated through multiple cytosolic regulators. Central to activation is the cytosolic regulator Rtg2p which through its interaction with Mks1p, promotes the nuclear translocation of Rtg1p/3p. Nuclear localized Rtg1p/3p promotes transcription of target genes. Prior work has shown Rtg2p interaction with Mks1p is required for downstream signaling, however the Mks1p binding site within Rtg2p is unknown. To identify this motif, random mutations were generated in RTG2 and a red-white screening strategy was used to assess 14,001 clones. Sequence analysis identified four mutants with amino acid mutations in the carboxy-terminus of Rtg2p that gave rise to defects in CIT2 transcription and loss of Mks1p interaction. Relative to RTG2, all mutants had reduced Rtg2p protein half-lives. Together these results suggest that the carboxy-terminal domain of Rtg2p is essential for retrograde signaling as it may contain the Mks1p binding site.
2

Characterization of Rtg2p protein interactions: The retrograde signaling complex of Saccharomyces cerevisiae

Miles, Abby Caroline 13 December 2024 (has links) (PDF)
In Saccharomyces cerevisiae, retrograde signaling is utilized as a pathway of communication from the mitochondria to the nucleus, regulating nuclear gene expression and allowing the cell to adapt to mitochondrial dysfunction. A key target of this pathway is CIT2, which encodes a peroxisomal citrate synthase essential for metabolic adaptation. This study aimed to investigate the complex composition of the retrograde initiating protein, Rtg2p. Through co-immunoprecipitation and size exclusion chromatography, Rtg2p was found to form a high molecular weight complex that contained multiple copies of Rtg2p. Previously generated mutations in the carboxyl terminus of Rtg2p shown to negatively impact CIT2 transcriptional upregulation, demonstrated reduced Rtg2p-Rtg2p self-association indicating the critical role of these interactions in retrograde signaling. These findings highlight the importance of protein interactions in maintaining the function of the Rtg2p complex, essential for effective cellular adaptation.
3

Mapeamento dos determinantes estruturais da proteína Rtg2p, envolvidos na sinalização retrógrada e no envelhecimento de Saccharomyces cerevisiae. / Structural mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae.

Anjos, Rafaela Maria Rios dos 05 July 2016 (has links)
Rtg2p é uma proteína que participa da sinalização retrógrada, uma via de comunicação da mitocôndria para o núcleo; também tem sido associada com a longevidade em S. cerevisiae. O objetivo deste trabalho foi identificar os determinantes estruturais de Rtg2p, envolvidos na sinalização retrógrada e no envelhecimento. Para isto foram produzidos treze mutantes pontuais a partir do desenho racional por decomposição de redes de correlação de aminoácidos (DRCN). Analisaram-se as cepas mutantes por ensaio de auxotrofia para glutamato, expressão do gene CIT2 e ensaio de longevidade replicativa. Em sua grande maioria as mutações realizadas causaram perturbações nas funções de Rtg2p, com destaque para as cepas E106A, R109E, E137A, T138A e D158A, que apresentaram longevidade igual à da cepa rtg2Δ, com apenas uma mutação pontual. Em conclusão, os resultados obtidos demonstram que o domínio N-terminal é muito importante para a função de Rtg2p, e indicam que existem determinantes estruturais que controlam a longevidade de forma dependente ou independente da resposta retrógrada. / Rtg2p is a protein involved in the retrograde signaling, a pathway of communcation from mitochondria to nucleus; also has been associated with longevity in S. cerevisiae. The goal of this study was to identify the structural determinants of Rtg2p, controlling the function of this protein in retrograde response and aging. For this purpose thirteen point mutants were produced by site-directed mutagenesis, using rational design by decomposition of residues correlation networks (DRCN). The strains was analyzed by glutamate auxotrophy, CIT2 gene expression and replicative life span assays. For the most of performed mutations, generated inactivation to Rtg2p functions, highlighting to R109E, E137A, T138A, and D158A showed longevity equal to rtg2Δ strain, even with a single amino acid change. In conclusion, our results demonstrate that the N-terminal domain is very important to the function of Rtg2p and also show there are structural determinants in Rtg2p that control longevity in both dependent or independent manner of the communication between mitochondria and nucleus.
4

Mapeamento dos determinantes estruturais da proteína Rtg2p, envolvidos na sinalização retrógrada e no envelhecimento de Saccharomyces cerevisiae. / Structural mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae.

Rafaela Maria Rios dos Anjos 05 July 2016 (has links)
Rtg2p é uma proteína que participa da sinalização retrógrada, uma via de comunicação da mitocôndria para o núcleo; também tem sido associada com a longevidade em S. cerevisiae. O objetivo deste trabalho foi identificar os determinantes estruturais de Rtg2p, envolvidos na sinalização retrógrada e no envelhecimento. Para isto foram produzidos treze mutantes pontuais a partir do desenho racional por decomposição de redes de correlação de aminoácidos (DRCN). Analisaram-se as cepas mutantes por ensaio de auxotrofia para glutamato, expressão do gene CIT2 e ensaio de longevidade replicativa. Em sua grande maioria as mutações realizadas causaram perturbações nas funções de Rtg2p, com destaque para as cepas E106A, R109E, E137A, T138A e D158A, que apresentaram longevidade igual à da cepa rtg2Δ, com apenas uma mutação pontual. Em conclusão, os resultados obtidos demonstram que o domínio N-terminal é muito importante para a função de Rtg2p, e indicam que existem determinantes estruturais que controlam a longevidade de forma dependente ou independente da resposta retrógrada. / Rtg2p is a protein involved in the retrograde signaling, a pathway of communcation from mitochondria to nucleus; also has been associated with longevity in S. cerevisiae. The goal of this study was to identify the structural determinants of Rtg2p, controlling the function of this protein in retrograde response and aging. For this purpose thirteen point mutants were produced by site-directed mutagenesis, using rational design by decomposition of residues correlation networks (DRCN). The strains was analyzed by glutamate auxotrophy, CIT2 gene expression and replicative life span assays. For the most of performed mutations, generated inactivation to Rtg2p functions, highlighting to R109E, E137A, T138A, and D158A showed longevity equal to rtg2Δ strain, even with a single amino acid change. In conclusion, our results demonstrate that the N-terminal domain is very important to the function of Rtg2p and also show there are structural determinants in Rtg2p that control longevity in both dependent or independent manner of the communication between mitochondria and nucleus.
5

Role mitochondrií a retrográdní signalizace při vývoji kvasinkových kolonií / Role mitochondria and retrograde signalization during development of yeast colony

Podholová, Kristýna January 2016 (has links)
Unicellular organisms such as yeast have been traditionally studied in shaken cultures, i.e., under condition in which they do not grow attached to solid surfaces as under natural conditions. In nature, cells only rarely live alone, but, on the other hand often create multicellular colonies or biofilms. During last years, yeasts started to be investigated also when grown on solid media. Our laboratory has previously developed special techniques for investigation of yeast colonies. These techniques allowed us to describe individual cell subpopulations within the colonies. The aim of this work was to prepare a series of mutant strains, describe morphology and ultrastructure of their colonies with the aim to contribute to understanding ofthe role of mitochondrial retrograde signalling pathway in the development of yeast colonies. This work describes expression of few selected genes (CIT2, RTG1, RTG2, and RTG3) in colonies of the parental strain BY4742 and of other mutant strains with deletion of one or more genes of RTG regulatory pathways. The results of the diploma thesis together with results of other authors became part of the publication (Podholová et al., 2016). Powered by TCPDF (www.tcpdf.org)

Page generated in 0.0309 seconds