• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biooxidation of gas-borne hydrogen sulfide and chemical oxidation of gas-borne odorants from rubber processing

Peng, Chih-Hao 02 June 2011 (has links)
This dissertation consists of two parts on the treatment of hydrogen sulfide and odorants in gases emitted from rubber processing industry. In the first part, we study performance of removal hydrogen sulfide with bioscrubber. An activated sludge aeration tank (W ¡Ñ L ¡Ñ H = 0.40 ¡Ñ 0.40 ¡Ñ 3.00 m) with a 2 mm-orifice air sparger was used to treat gaseous hydrogen sulfide (H2S). The investigation tested the operational stability as well as how the removal ability of H2S was affected by influent H2S concentration (C0 = 50-900 ppm), aeration intensity (Q/V = 0.083-0.50 m3 m-3 min-1), liquid depth (H = 0.5-3.0 m), and mixed-liquor suspended solids concentration (MLSS = 970-2,800 mg L-1). Experimental results indicate that H2S removal efficiencies of 96% and over 98% were obtained with H = 0.5 m and H > 1.0 m in the cited operation conditions, respectively. Experimental results also indicate no sludge bulking problem occurred with total sulfide loadings of 0.047-0.148 kg S kg-1 MLSS d-1. The second part aimed at the removal of odorous compounds in gases emitted from rubber processing industries. Simulated odorous gas for test was prepared by mixing fresh air and an odorous gas drawn from an oven in which a sample of rubber powder was kept either at 160¢XC (for a thermal plastic rubber) or 200¢XC (for a thermal setting rubber). The prepared odorous gas was then premixed with a definite amount of ozone-enriched air and introduced into a contact system. The contact system consists of two sieve-plate columns connected in series and each column has four 1-L chambers. Depending on with or without introducing circulating scrubbing water into the columns, the oxidation reaction could be either wet or dry one. Results indicate the wet oxidation got better performances than the dry one. The former got 97 and over 90% removal of VOCs (volatile organic compounds) and odorous intensity removal, respectively, with the operation conditions of initial ozone concentration 4.0 ppm, THC (total hydrocarbon) concentrations 6.5¡V10.3 ppm (methane equivalent), oxidation temperature 37.3¢XC, gas empty bed retention time (EBRT) 12 s, and liquid/gas rate ratio 0.01 m3/m3. With conditions similar to those cited above, odor concentration (dilutions to the threshold, D/T) in the test gas could be reduced from 1,738¡V3,090 to 31¡V98 with EBRTs of 11.4¡V14.5 s. Activated carbon is effective for both physical and chemical removals of residual VOCs, odorous compounds, and ozone in the effluent gas from the ozonation system. Economical analysis indicates that around US$ 0.16 is required for treating 1,000 m3 of the tested foul gas by the proposed ozonation process.
2

The research for local medium enterprise growth strategy-rubber processing industies

Wu, Chaw-yee 26 August 2005 (has links)
Local medium enterprises used to make economic miracles for Taiwan. However,in the wake of the changes in the macro environment, the rapid development of technology, changes in people¡¦s needs, increasing awareness of job safety and environmental protection, changes in the structure of workplace, capital and human resources moving to China as a result of rising mainland China, and recent rising prices of materials, local medium enterprises have been badly shattered, and their survival space has been squeezed. Rubber processing industries are in especially dire situations because they are labor-intensive and operate in inferior working conditions.So this research was designed to investigate how medium and small rubber processing industries, operating under such hostile business environment, can make good use of resources, overcome unfavorable environmental factors so as to energize business and continue business growth. Through literature investigation, this study used Advantages in Business Competition authored by professor Fang Chih-Min as the main research framework. At the same time, in combination with the review of other literature, through a process of affective learning, this study summarized, compiled and put forth a contention that a business must have advantages lying in ¡§ability to use resources effectively,¡¨¡§ability to achieve internal growth,¡¨ and ¡§ability to achieve external growth¡¨ before it can grow. The study inferred a topic from this contention. Then research was conducted based on case study approach. It was expected to understand, from this topic, what conditions would happen to the case and how to solve them. The results would be contrasted with theory, hoping to investigate and find out what would play a critical role in affecting the growth of a business. Then through practical verification,this study summarized, compiled, and proposed conclusions and suggestions. Through the research of this study, it was initially found that the essence of management would not change because of the size of a business and that how to conduct optimal use of limited resources to construct competition edge which is not related to size plays a vital role of the growth of small businesses. Moreover, in addition to strengthening their mainstream business, small businesses must also plan to enter businesses that can grow and profit tremendously so as to speed up their growth. As to suggestions offered to the case companies, in addition to enhancing their internal operation and management, they should also make good use of external resources to optimize the performance of resources, which would be the key to their growth.
3

Ozone deodoration of wasted gases from rubber processing

Cheng, Li-Yi 01 July 2008 (has links)
This study was aimed at the removal of odorous compounds in gases emitted from rubber processing industries. Odorous gas for test was prepared by mixing fresh air and an odorous gas drawn from an oven in which a sample of rubber powder was kept at 160 and 200 oC, respectively. For ozonation tests, the prepared odorous gas was then premixed with a definite amount of ozone-enriched air before entering into a contact system. The contact system consists of two sieve-plate columns connected in series and each column has four 1-L chambers. Depending on with or without introducing a circulating scrubbing water into the columns, the oxidation reaction could be either wet or dry one. For UV/ozonation (UV/O3) tests, batch reactions were performed in a 3.63-L chamber fitted with an UV lamp inserted in a quartz column. A definite volume of the odorous gas generated from the oven was injected into the chamber containing a definite concentration of ozone. Results from the dry-ozonation tests indicate that that 82 and 70% of VOCs and odorous intensity in the influent gas could be removed, respectively, with the operation conditions of an initial ozone concentration of 4.0 ppm, VOC (methane equivalent) concentrations of 6.5-9.0 ppm, an oxidation temperature of 38.5 oC, and a gas empty-bed-retention time (EBRT) of 8.6 s. Both the VOC and odorous intensity removal efficiencies were roughly proportional to the EBRT in the range of 1.4-11.4 s. Wet-ozonation got 97 and over 90% of VOC and odorous intensity removal, respectively, with the operation conditions of initial ozone concentration 4.0 ppm, VOC (methane equivalent) concentrations 6.5-10.3 ppm, oxidation temperature 37.3 oC, gas EBRT 12 s, and liquid/gas rate ratio 0.01 m3/m3. With conditions similar to those cited above, odor concentration (dilutions to the threshold) in the test gas could be removed from 3,090 to 130 with an EBRT of 14.5 s. Tests also indicate that activated carbon is effective for both physical and chemical removals of the residual VOCs, odorous compounds, and ozone in the effluent gas from the ozonation system. Economical analysis indicates that around NT$ 5.4 is required for treating 1,000 m3 of the tested foul gas by the proposed wet-ozonation and activated carbon adsorption process. Odor concentration (dilutions to the threshold) in a test could be reduced from around 4,000 to 70. Results of UV/O3 tests indicate that the introduction of the 185 nm UV irradiation at the intensity of 5W/3.63L did not help in the additional VOC and odor removals with an initial ozone concentration 4.0 ppm, VOC (methane equivalent) concentrations of 12.2-15.0 ppm, oxidation temperature of 31.5 oC, and reaction time 18.2 s. UV irradiation is not necessary for the ozonation odor removal of the test gas samples.
4

Investigation of Design and Operating Parameters in Partially-Filled Rubber Mixing Simulations

Das, Suma Rani January 2016 (has links)
No description available.

Page generated in 0.0554 seconds