• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mitigation of Climate Change Impacts on Runway Friction Kuujjuaq Airport

Konarski, Karolina January 2014 (has links)
In response to global climate change, Transport Canada has initiated a Climate Change Adaptation Study in order to provide an opportunity to improve knowledge of the impacts of climate change on transportation infrastructure in Northern Canada. In particular, this research aims to identify ways to mitigate the impacts of climate change on pavement surface friction characteristics at a project specific location: Runway 07-25 of Kuujjuaq Airport in Nunavik, Québec. This site was chosen because it is a complex site with highly variable soil conditions. Runway 07-25 is one of the busier runways in Nunavik and its traffic includes jet airplanes. The runway is also exposed to extensive winter maintenance activities. In addition, Runway 07-25 is considered a short runway and has a crossfall instead of crown for surface drainage. Increasing ambient temperatures have already led to a deeper active layer over permafrost, which affects overall runway performance. Climate change is especially evident in the winter months with large temperature fluctuations resulting in increased freeze thaw cycles. The site is, therefore, a good location to study solutions to climate change impacts, which are expected to affect other Canadian airports in the future. Kuujjuaq Runway 07-25 is of paramount importance to the community of Kuujjuaq, other communities in Nunavik, and communities north of Nunavik. It serves as a regional hub between the south, Nunavik’s communities and Iqaluit to the north, and provides an essential link for emergency evacuations, personal and business travel, as well as the transportation of basic food items. Globally, amongst the groups, the most affected by the impacts of climate change are the Inuit communities in Nunavik. Scientists and residents of these communities are witnessing growing evidence of the impacts of accelerated warming in this region, which is expected to continue into the future. In this research, runway texture and friction are assessed on Runway 07-25, as increased winter maintenance activities resulting from climate change are thought to be reducing surface friction. Existing friction and texture measurement data from previous years, current laboratory testing results on samples of the existing asphalt concrete mix as well as current surface texture and friction measurement data from the runway have been analysed to study trends and characterize the runway in terms of its frictional resistance. Friction improving technologies/products are discussed for maintenance and future rehabilitation options.
2

Investigation of the Validity of the ASTM Standard for Computation of International Friction Index

Kavuri, Kranthi 06 November 2008 (has links)
Runway friction testing is performed in order to enhance the safety of aircraft operation on runways. Preventative maintenance friction surveys are performed to determine if there is any deterioration of the frictional resistance on the surface over a period of time and to determine if there is a need for corrective maintenance. In addition operational performance friction surveys are performed to determine frictional properties of a pavement surface in order to provide corrective action information in maintaining safe take-off or landing performance limits. A major issue encountered in both types of friction evaluation on runways is the standardization of the friction measurements from different Continuous Friction Measuring Equipment (CFME). The International Friction Index (IFI) has been formulated to address the above issue and determine the friction condition of a given runway is a standardized format. The ASTM recommended standard procedure to compute the IFI of a runway surface employs two distinct parameters to express the IFI; F60 is the friction value adjusted to a slip speed of 60 km/h and correlated to the standard Dynamic Friction Tester (DFT) measurement. And Sp is the speed constant which is governed by the mean profile depth of that surface. The primary objective of this thesis is to investigate the reliability of the current ASTM procedure to standardize runway friction measurements in terms of IFI. Based on the ASTM standard procedure, two equipment specific calibration constants (A and B) are assigned for each CFME during calibration. Then, in subsequent testing those calibrations constants can be used to adjust the equipment measurements to reliable IFI values. Just as much as A and B are presumed to be characteristic of any given CFME, they are also expected to be independent of the operational speed. The main objective of the annual NASA Runway Friction Workshop held in Wallops Island, Virginia, is to calibrate commonly used CFMEs such that all calibrated equipment would provide a standard reading (i.e. IFI) on a particular surface. During validation of the existing ASTM procedure using the NASA Runway Friction Workshop data it was observed that the single value-based IFI predictions of the calibrated CFMEs were inaccurate resulting in low correlations with DFT measured values. Therefore, a landing pilot should not be left to make a safe decision with such an uncertain single standard friction value because the actual standard friction value could very well be much less than this value. Hence a modified procedure was formulated to treat the calibration constants A and B as normally distributed random variables even for the same CFME. The new procedure can be used to predict the IFI (F60) of a given runway surface within a desired confidence interval. Since the modified procedure predicts a range of IFI for a given runway surface within two bounds, a landing pilot's decision would be made easier based on his/her experience on critical IFI values. However, even the validation of the modified procedure presented some difficulties since the DFT measurements on a few validated surfaces plotted completely outside the range of F60 predicted by the modified method. Furthermore, although the ASTM standard stipulates the IFI (F60) predictions to be independent of the testing speed, data from the NASA Runway Friction Workshop indicates a significant difference in the predictions from the two testing speeds of 65 km/hr and 95 km/hr, with the results from the 65 km/hr tests yielding better correlations with the corresponding DFT measurements. The above anomaly could be attributed to the significantly different FR60 values obtained when the 65 km/hr data (FR65) and 95 km/hr data (FR95) are adjusted to a slip speed of 60 km/hr. Extended analytical investigations revealed that the expected testing speed independency of the FR60 for a particular CFME cannot be supported by the ASTM defined general linear relationship between Sp and the mean profile depth which probably has been formulated to satisfy a multitude of CFMEs operating on a number of selected test surfaces. This very reason can also be attributed to the above mentioned outliers observed during the validation of the modified procedure.
3

Optimizing Airport Runway Performance by Managing Pavement Infrastructure

Pinto, Samantha Theresa January 2012 (has links)
The research described herein is composed of four major areas of practice. It examines the overall performance of runways and provides tools designed to improve current runway operations and management with particular emphasis on contaminated surfaces. Presented in this thesis is an overview of how to design airport pavements in order to achieve optimal friction by specifically focusing on material selection and construction techniques for rigid and flexible pavements. Rubber buildup and the impact rubber accumulation has on decreasing runway friction, particularly in a range of climatic conditions, is discussed. Four commonly used rubber removal techniques are presented and evaluated. Through this research, an analytical hierarchy process (AHP) decision making protocol was developed for incorporation into airport pavement management systems (APMS). Runway surface condition reporting practices used at the Region of Waterloo International Airport are evaluated and recommendations for improving current practices are identified. Runway surface condition reporting can be improved by removing subjectivity, reporting conditions to pilots in real time, standardizing terminology and measurement techniques, and including runway pictures or sketches to identify contaminant locations where possible. Reports should be incorporated and stored in the APMS. Aircraft braking systems and their effects on landing distances under contaminated conditions are discussed. This thesis presents a proposed solution for monitoring and measuring contaminated runway surfaces and identifying the risks associated with aircraft landing through using the Braking Availability Tester (BAT). Also proposed in this thesis is a testing framework for validating the Braking Availability Tester. The proposed BAT measures interaction between aircraft antiskid braking systems and runway contaminants to determine landing distances more accurately. Finally, this thesis includes a discussion explaining how pavement design, contaminant removal, results from friction tests, and results from the BAT can be incorporated into airport pavement management systems. APMS data can be analyzed to economically optimize and prioritize scheduling of pavement maintenance, preservation and rehabilitation treatments to maintain a high level of service, thereby contributing to runway safety and optimization.
4

Optimizing Airport Runway Performance by Managing Pavement Infrastructure

Pinto, Samantha Theresa January 2012 (has links)
The research described herein is composed of four major areas of practice. It examines the overall performance of runways and provides tools designed to improve current runway operations and management with particular emphasis on contaminated surfaces. Presented in this thesis is an overview of how to design airport pavements in order to achieve optimal friction by specifically focusing on material selection and construction techniques for rigid and flexible pavements. Rubber buildup and the impact rubber accumulation has on decreasing runway friction, particularly in a range of climatic conditions, is discussed. Four commonly used rubber removal techniques are presented and evaluated. Through this research, an analytical hierarchy process (AHP) decision making protocol was developed for incorporation into airport pavement management systems (APMS). Runway surface condition reporting practices used at the Region of Waterloo International Airport are evaluated and recommendations for improving current practices are identified. Runway surface condition reporting can be improved by removing subjectivity, reporting conditions to pilots in real time, standardizing terminology and measurement techniques, and including runway pictures or sketches to identify contaminant locations where possible. Reports should be incorporated and stored in the APMS. Aircraft braking systems and their effects on landing distances under contaminated conditions are discussed. This thesis presents a proposed solution for monitoring and measuring contaminated runway surfaces and identifying the risks associated with aircraft landing through using the Braking Availability Tester (BAT). Also proposed in this thesis is a testing framework for validating the Braking Availability Tester. The proposed BAT measures interaction between aircraft antiskid braking systems and runway contaminants to determine landing distances more accurately. Finally, this thesis includes a discussion explaining how pavement design, contaminant removal, results from friction tests, and results from the BAT can be incorporated into airport pavement management systems. APMS data can be analyzed to economically optimize and prioritize scheduling of pavement maintenance, preservation and rehabilitation treatments to maintain a high level of service, thereby contributing to runway safety and optimization.

Page generated in 0.0719 seconds