• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixing in a tank stirred by a Rushton turbine at a low clearance

Ochieng, A, Onyango, MS, Kumar, A, Kiriamiti, K, Musonge, P January 2008 (has links)
Mixing efficiency in stirred tanks is an important consideration in the design of many industrial processes. Computational fluid dynamics (CFD) techniques have been employed in the present work to study the hydrodynamics in a tank stirred by a Rushton turbine. The effect of the impeller clearance on the velocity field and mixing has been investigated. It has been shown that at a low impeller clearance, the Rushton turbine generates a flow field that evolves from the typical two loops to a single loop flow pattern similar to that of an axial impeller. This single loop flow pattern resulted in an increase in axial flow and a decrease in mixing time at a constant power number. It has been found that a draft tube can be used with a single Rushton turbine, at a low clearance to aid axial flow and mixing, and this resulted in 50% reduction in mixing time. There was a good comparison between laser Doppler velocimetry (LDV) experimental and CFD simulation flow fields, both of which showed that the draft tube improved mixing in the tank by suppressing secondary circulation loops.
2

Turbulent Characteristics in Stirring Vessels: A Numerical Investigation

Vlachakis, Vasileios N. 09 April 2007 (has links)
Understanding the flow in stirred vessels can be useful for a wide number of industrial applications, like in mining, chemical and pharmaceutical processes. Remodeling and redesigning these processes may have a significant impact on the overall design characteristics, affecting directly product quality and maintenance costs. In most cases the flow around the rotating impeller blades interacting with stationary baffles can cause rapid changes of the flow characteristics, which lead to high levels of turbulence and higher shear rates. The flow is anisotropic and inhomogeneous over the entire volume. A better understanding and a detailed documentation of the turbulent flow field is needed in order to design stirred tanks that can meet the required operation conditions. This thesis describes efforts for accurate estimation of the velocity distribution and the turbulent characteristics (vorticity, turbulent kinetic energy, dissipation rate) in a cylindrical vessel agitated by a Rushton turbine (a disk with six flat blades) and in a tank typical of flotation cells. Results from simulations using FLUENT (a commercial CFD package) are compared with Time Resolved Digital Particle Image Velocimetry (DPIV) for baseline configurations in order to validate and verify the fidelity of the computations. Different turbulence models are used in this study in order to determine the most appropriate for the prediction of turbulent properties. Subsequently a parametric analysis of the flow characteristics as a function of the clearance height of the impeller from the vessel floor is performed for the Rushton tank as well as the flotation cell. Results are presented for both configurations along planes normal or parallel to the impeller axis, displaying velocity vector fields and contour plots of vorticity turbulent dissipation and others. Special attention is focused in the neighborhood of the impeller region and the radial jet generated there. This flow in this neighborhood involves even larger gradients and dissipation levels in tanks equipped with stators. The present results present useful information for the design of the stirring tanks and flotation cells, and provide some guidance on the use of the present tool in generating numerical solutions for such complex flow fields. / Master of Science
3

Numerical Investigation Of Stirred Tank Hydrodynamics

Yapici, Kerim 01 January 2003 (has links) (PDF)
A theoretical study on the hydrodynamics of mixing processes in stirred tanks is described. The primary objective of this study is to investigate flow field and power consumption generated by the six blades Rushton turbine impeller in baffled, flat-bottom cylindrical tank both at laminar and turbulent flow regime both qualitatively and quantitatively. Experimental techniques are expensive and time consuming in characterizing mixing processes. For these reasons, computational fluid dynamics (CFD) has been considered as an alternative method. In this study, the velocity field and power requirement are obtained using FASTEST, which is a CFD package. It employs a fully conservative second order finite volume method for the solution of Navier-Stokes equations. The inherently time-dependent geometry of stirred vessel is simulated by a multiple frame of reference approach. The flow field obtained numerically agrees well with those published experimental measurements. It is shown that Rushton turbine impeller creates predominantly radial jet flow pattern and produces two main recirculation flows one above and the other below the impeller plane. Throughout the tank impeller plane dimensionless radial velocity is not affected significantly by the increasing impeller speed and almost decreases linearly with increase in radial distance. Effect of the baffling on the radial and tangential velocities is also investigated. It is seen that tangential velocity is larger than radial velocity at the same radial position in unbaffled system. An overall impeller performance characteristic like power number is also found to be in agreement with the published experimental data. Also power number is mainly affected by the baffle length and increase with increase in baffle length. It is concluded that multiple frame of reference approach is suitable for the prediction of flow pattern and power number in stirred tank.
4

High Resolution Simulation of Laminar and Transitional Flows in a Mixing Vessel

Rice, Matthew Jason 01 July 2011 (has links)
The present work seeks to fully investigate, describe and characterize the distinct flow regimes existing within a mixing vessel at various rotational speeds. This investigation is computational in nature and simulates the flow within a baffled tank containing a Rushton turbine of the standard configuration. For a Re based on impeller diameter and blade rotational speed (Re â ¡ Ï ND2/μ) the following flow regimes were identified and investigated in detail: Reverse/reciprocating flows at very low Re (<10); stalled flows at low Re (â 10); laminar pumping flow for higher Re and transitional pumping flow (10 squared < Re <10 to the 4th). For the three Re numbers 1, 10 and 28, it was found that for the higher Re number (28), the flow exhibited the familiar outward pumping action associated with radial impellers under turbulent flow conditions. However, as the Re number decreases, the net radial flow during one impeller revolution was reduced and for the lowest Re number a reciprocating motion with negligible net pumping was observed. In order to elucidate the physical mechanism responsible for the observed flow pattern at low Re, the forces acting on a fluid element in the radial direction were analyzed. Based on this analysis, a simplified quasi-analytic model of the flow was developed that gives a satisfactory qualitative, as well as quantitative representation of the flow at very low Re. Investigation of the transitional flow regime (Re â 3000) includes a compilation and characterization of ensemble and turbulent quantities such as the Reynolds stress components, dissipation length η and time scales Ï , as well a detailed investigation of the near-impeller flow and trailing vortex. Calculation and compilation of all terms in the turbulent kinetic energy transport equation was performed (including generation and the illusive turbulent pressure work). Specifically, the most important transport mechanism was turbulent convection/diffusion from the impeller disk-plane/trailing vortex region. Mean flow transport of turbulent kinetic energy was primarily towards the impeller disk-plane and radially outward from the trailing vortex region. The turbulent pressure work was found to partially counteract turbulent convection. Turbulent dissipation followed by turbulent viscous work were found to be the least important mechanism responsible for turbulent transport with both terms being maximized within the vortex region and at the disk-plane down-stream from the vortices. / Ph. D.
5

Transferência de oxigênio e cisalhamento em biorreator convencional com diferentes combinações de impelidores

Buffo, Mariane Molina 26 February 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-30T12:00:09Z No. of bitstreams: 1 DissMMB.pdf: 2553777 bytes, checksum: 21e951a2087a84913403141b819234c7 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:44:47Z (GMT) No. of bitstreams: 1 DissMMB.pdf: 2553777 bytes, checksum: 21e951a2087a84913403141b819234c7 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:44:55Z (GMT) No. of bitstreams: 1 DissMMB.pdf: 2553777 bytes, checksum: 21e951a2087a84913403141b819234c7 (MD5) / Made available in DSpace on 2016-10-20T13:45:03Z (GMT). No. of bitstreams: 1 DissMMB.pdf: 2553777 bytes, checksum: 21e951a2087a84913403141b819234c7 (MD5) Previous issue date: 2016-02-26 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / The type and operational conditions of a bioreactor chosen during the production phase of a product of interest affect not only the morphology and growth of filamentous microorganisms but also the product itself. Still the most common process to produce bioproducts is submerged cultures in conventional stirred and aerated bioreactors, with impeller of type six flat-blade turbine, or Rushton turbine (RT), which promotes good mixing and suitable oxygen transfer, but its power consumption is high and it causes high shear rate to the broth creating a hostile environment to the microorganisms. Alternatively, an impeller of the type “Elephant Ear” (EE) is shown in the literature as a “low shear” impeller, more suitable for the cultivation of shear sensitive microorganisms. This impeller creates a mixed flow (axial and radial) of broth with down flow (EEDP) or up (EEUP) depending on its geometry. This study aimed to evaluate the best association of impellers for filamentous fungi cultures in a conventional bioreactor. Initially the volumetric coefficient of oxygen transfer (kLa) and the power consumption of seven different association of impellers were evaluated. The results obtained the factorial design methodology showed that the associations EEDP-EEUP, RT-EEDP, and EEDP-RT, showed the best results regarding the oxygen transfer and the power consumption, being up to 87% more efficient than the standard RT-RT association. Two of the better performing association and the traditional (RT-RT) were selected to be evaluated regarding the shearing, by using empirical equations and the size of the eddies, evaluated by the Kolmogorov microscale. The association that showed higher values on the Kolmogorov scale and least shearing was EEDPEEUP, with shearing up to 60% lower than the RT-RT association. In the last step the effects of shear on the morphology of the fungi Aspergillus niger was evaluated. Short-term cultures (4h) were cultivated so that the cellular growth would not harm the analysis. The results showed that on the culture that used the EEDP-EEUP association the morphological form of cell clumps predominated, while on the culture that used the RT-RT association the morphological form of branched hyphae predominated, suggesting that the RT-RT association causes more shearing and can cause irreversible damage to the fungal cells. / O crescimento celular e a morfologia de microrganismos filamentosos, bem como o produto de interesse são afetados pelo modelo de biorreator e pelas condições de operação adotadas durante a etapa de produção. O processo mais adotado industrialmente para produção de bioprodutos ainda são os cultivos submersos em biorreatores convencionais tipo tanque agitado e aerado, sendo o impelidor tipo turbina de seis pás planas ou turbina de Rushton (RT) o mais utilizado por promover boa mistura e adequada transferência de oxigênio, porém seu consumo de potência é alto além de impor alto cisalhamento ao caldo gerando um ambiente hostil ao microrganismo. Alternativamente, o impelidor tipo “orelha de Elefante” ou “Elephant ear” (EE) é apresentado na literatura como um impelidor de “baixo cisalhamento” mais adequado para o cultivo dos microrganismos sensíveis ao cisalhamento. Esse impelidor promove um escoamento misto (axial e radial) do caldo com escoamento para baixo (EEDP) ou para cima (EEUP) dependendo da sua geometria. O presente trabalho teve como objetivo avaliar as melhores associações de impelidores para cultivos de fungos filamentosos em biorreator convencional. Primeiramente sete diferentes associações foram avaliadas em relação ao coeficiente volumétrico de transferência de oxigênio (kLa) e consumo de energia. Os resultados obtidos utilizando a metodologia de planejamento experimental fatorial mostraram que as configurações EEDP-EEUP, RT-EEDP e EEDP-RT foram as que apresentaram melhores resultados em relação à transferência de oxigênio e consumo de potência, com eficiência até 87% superior à associação padrão RT-RT. Foram então selecionadas duas das associações de melhor desempenho e a tradicional (RT-RT) para serem avaliadas em relação ao cisalhamento, através de equações empíricas e em relação ao tamanho dos turbilhões, avaliado pela microescala de Kolmogorov. A associação que apresentou maiores valores para microescala de Kolmogorov e menor cisalhamento foi a EEDP-EEUP, com cisalhamento até 60% inferior que a observada quando utilizada a associação RT-RT. Na última etapa verificou-se os efeitos do cisalhamento na morfologia do fungo Aspergillus niger. Foram realizados cultivos de curta duração (4 h) para evitar que o crescimento celular prejudicasse a análise. Os resultados mostraram que no cultivo utilizando o sistema EEDP-EEUP predominou a forma morfológica de aglomerados celulares (clumps), enquanto que no cultivo com impelidores Rushton (RT-RT) predominou a forma morfológica de hifas ramificadas, sugerindo um cisalhamento mais intenso provocado por este sistema de agitação, que pode acarretar danos irreversíveis às células fúngicas.

Page generated in 0.0384 seconds