Spelling suggestions: "subject:"rydberg"" "subject:"rydbergs""
11 |
Rydberg excitation of Bose-Einstein condensates: coherent collective dynamicsHeidemann, Rolf January 2008 (has links)
Zugl.: Stuttgart, Univ., Diss., 2008
|
12 |
Spontaneous decoherence in large Rydberg systems / Décohérence spontanée dans les grands ensembles d'atomes de RydbergMagnan, Eric 17 December 2018 (has links)
La simulation quantique consiste à réaliser expérimentalement des systèmes artificiels équivalent à des modèles proposés par les théoriciens. Pour réaliser ces systèmes, il est possible d'utiliser des atomes dont les états individuels et les interactions sont contrôlés par la lumière. En particulier, une fois excités dans un état de haute énergie (appelé état de Rydberg), les atomes peuvent être contrôlés individuellement et leurs interactions façonnées arbitrairement par des faisceaux laser. Cette thèse s'intéresse à deux types de simulateurs quantiques à base d'atomes de Rydberg, et en particulier à leurs potentielles limitations.Dans l'expérience du Joint Quantum Institute (USA), nous observons la décohérence dans une structure cubique contenant jusqu'à 40000 atomes. A partir d'atomes préparés dans un état de Rydberg bien défini, nous constatons l'apparition spontanée d'états de Rydberg voisins et le déclenchement d'un phénomène d'avalanche. Nous montrons que ce mécanisme émane de l'émission stimulée produite par le rayonnement du corps noir. Ce phénomène s'accompagne d'une diffusion induite par des interactions de type dipole-dipole résonant. Nous complétons ces observations avec un modèle de champ moyen en état stationnaire. Dans un second temps, l'étude de la dynamique du problème nous permet de mesurer les échelles de temps caractéristiques. La décohérence étant globalement néfaste pour la simulation quantique, nous proposons plusieurs solutions pour en atténuer les effets. Nous évaluons notamment la possibilité de travailler dans un environnement cryogénique, lequel permettrait de réduire le rayonnement du corps noir.Dans l'expérience du Laboratoire Charles Fabry à l'Institut d'Optique (France), nous analysons les limites d'un simulateur quantique générant des structures bi- et tridimensionnelles allant jusqu'à 70 atomes de Rydberg piégés individuellement dans des pinces optiques. Le système actuel étant limité par le temps de vie des structures, nous montrons que l'utilisation d'un cryostat permettrait d'atteindre des tailles de structures jusqu'à 300 atomes. Nous présentons les premiers pas d'une nouvelle expérience utilisant un cryostat à 4K, et en particulier les études amont pour le développement de composants optomécaniques placés sous vide et à froid. / Quantum simulation consists in engineering well-controlled artificial systems that are ruled by the idealized models proposed by the theorists. Such toy models can be produced with individual atoms, where laser beams control individual atomic states and interatomic interactions. In particular, exciting atoms into a highly excited state (called a Rydberg state) allows to control individual atoms and taylor interatomic interactions with light. In this thesis, we investigate experimentally two different types of Rydberg-based quantum simulators and identify some possible limitations.At the Joint Quantum Institute, we observe the decoherence of an ensemble of up to 40000 Rydberg atoms arranged in a cubic geometry. Starting from the atoms prepared in a well-defined Rydberg state, we show that the spontaneous apparition of population in nearby Rydberg states leads to an avalanche process. We identify the origin of the mechanism as stimulated emission induced by black-body radiation followed by a diffusion induced by the resonant dipole-dipole interaction. We describe our observations with a steady-state mean-field analysis. We then study the dynamics of the phenomenon and measure its typical timescales. Since decoherence is overall negative for quantum simulation, we propose several solutions to mitigate the effect. Among them, we discuss the possibility to work at cryogenic temperatures, thus suppressing the black-body induced avalanche.In the experiment at Laboratoire Charles Fabry (Institut d'Optique), we analyze the limitation of a quantum simulator based on 2 and 3 dimensional arrays of up to 70 atoms trapped in optical tweezers and excited to Rydberg states. The current system is limited by the lifetime of the atomic structure. We show that working at cryogenic temperatures could allow to increase the size of the system up to N=300 atoms. In this context, we start a new experiment based on a 4K cryostat. We present the early stage of the new apparatus and some study concerning the optomechanical components to be placed inside the cryostat.
|
13 |
Studies of Rydberg atomic xenon and molecular hydrogen /Wang, Liang-Guo January 1986 (has links)
No description available.
|
14 |
The identification and analysis of Rydberg states of A1C1 /Peter, Susan Leenov January 1987 (has links)
No description available.
|
15 |
ABSOLUTE MEASUREMENT OF IONIZATION CROSS SECTIONS IN COLLISIONS BETWEEN RYDBERG SODIUM ATOMS.GAEBE, CARL EDWARD. January 1984 (has links)
Absolute ionization cross sections have been determined for collisions between sodium atoms in laser-selected Ryberg states. Measurements were made in a thermal-energy self-colliding beam for n = 26-29 D states. The cross sections have been found to be roughly fifty times geometric and show fair agreement with a recent classical trajectory Monte Carlo calculation but differ greatly from an earlier indirect measurement.
|
16 |
Ressonâncias moleculares em estados nP de átomos de Rydberg frios / Molecular resonances in nP states of cold Rydberg atomsKondo, Jorge Douglas Massayuki 12 November 2010 (has links)
Neste trabalho estudamos a interação entre átomos de Rydberg no estado nP e sua dependência com o campo elétrico dc. Estes estados apresentam ressonâncias Föster para um número quântico principal n menor que 37. Nestes processos de ressonância um par atômico no estado nP muda para um par nS+(n+1)S. Realizamos dois experimentos de evolução temporal para 32≤n≤36. No primeiro investigamos a dependência da taxa de transferência de população NnS em função do número quântico principal n. E no segundo estudamos a transferência de população para um estado fixo de n=33 em função do campo elétrico. Além disso, estudamos a dependência da população no estado 33S em função da densidade de átomos de Rydberg no estado 33P. Estes resultados nos permitem observar duas contribuições distintas, uma linear relacionada a radiação de corpo negro e uma quadrática ligada a interação de dois corpos. Estes resultados confirmam o modelo de taxa para o efeito da radiação de corpo negro. / In this work we studied the role of Rydberg atoms interactions in the nP state and the dc electric field dependency of this process. The nP state shows Föster resonances for principal quantum number less than 37. In this resonance process, an atomic pair in nP state changes to a pair nS+(n+1)S. We have performed two time evolution experiments for 32≤n≤36. In the first one we have investigated the NnS population transfer rate for a variable principal quantum number n. In the second we have study the population transfer for a fixed n=33, by varying an electric field. Moreover, we observed the density dependency of the population in the 33S state by varying the nP state atomic density. The results allow us to observe two distinct contributions, a linear contribution related with the black body radiation and a quadratic one connected with two body process. The results agree well with the rate model used to treat the black body radiation.
|
17 |
Fabrication of an Atom Chip for Rydberg Atom-Metal Surface Interaction StudiesCherry, Owen January 2007 (has links)
This thesis outlines the fabrication of two atom chips for the study of interactions between ⁸⁷Rb Rydberg atoms and a Au surface. Atom chips yield tightly confined, cold samples of an atomic species by generating magnetic fields with high gradients using microfabricated current-carrying wires. These
ground state atoms may in turn be excited to Rydberg states. The trapping wires of Chip 1 are fabricated using thermally evaporated Cr/Au and patterned using lift-off photolithography. Chip 2 uses a Ti/Pd/Au tri-layer, instead of Cr/Au, to minimize interdiffusion. The chip has a thermally
evaporated Au surface layer for Rydberg atom-surface interactions, which is separated from the underlying trapping wires by a planarizing polyimide dielectric. The polyimide was patterned using reactive ion etching. Special attention was paid to the edge roughness and electrical properties of the trapping wires, the planarization of the polyimide, and the grain structure of the Au surface.
|
18 |
Fabrication of an Atom Chip for Rydberg Atom-Metal Surface Interaction StudiesCherry, Owen January 2007 (has links)
This thesis outlines the fabrication of two atom chips for the study of interactions between ⁸⁷Rb Rydberg atoms and a Au surface. Atom chips yield tightly confined, cold samples of an atomic species by generating magnetic fields with high gradients using microfabricated current-carrying wires. These
ground state atoms may in turn be excited to Rydberg states. The trapping wires of Chip 1 are fabricated using thermally evaporated Cr/Au and patterned using lift-off photolithography. Chip 2 uses a Ti/Pd/Au tri-layer, instead of Cr/Au, to minimize interdiffusion. The chip has a thermally
evaporated Au surface layer for Rydberg atom-surface interactions, which is separated from the underlying trapping wires by a planarizing polyimide dielectric. The polyimide was patterned using reactive ion etching. Special attention was paid to the edge roughness and electrical properties of the trapping wires, the planarization of the polyimide, and the grain structure of the Au surface.
|
19 |
Many-body dipole interactionsHernández, Jesús V. Robicheaux, Francis J., January 2008 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2008. / Abstract. Includes bibliographical references (p. 121-127).
|
20 |
Very Accurate Quantum Mechanical Non-Relativistic Spectra Calculations of Small Atoms & Molecules Employing All-Particle Explicitly Correlated Gaussian Basis FunctionsSharkey, Keeper Layne January 2015 (has links)
Due to the fast increasing capabilities of modern computers it is now feasible to calculate spectra of small atom and molecules with the greater level of accuracy than high-resolution measurements. The mathematical algorithms developed and implemented on high performance supercomputers for the quantum mechanical calculations are directly derived from the first principles of quantum mechanics. The codes developed are primarily used to verify, refine, and predict the energies associated within a given system and given angular momentum state of interest. The Hamiltonian operator used to determine the total energy in the approach presented is called the internal Hamiltonian and is obtained by rigorously separating out the center-of-mass motion (or the elimination of translational motion) from the laboratory-frame Hamiltonian. The methods utilized in the articles presented in this dissertation do not include relativistic corrections and quantum electrodynamic effects, nor do these articles assume the Born-Oppenheimer (BO) approximation with the exception of one publication. There is one major review article included herein which describes the major differences between the non-BO method and the BO approximation using explicitly correlated Gaussian (ECG) basis functions. The physical systems studied in this dissertation are the atomic elements with Z < 7 (although the discussion is not limited to these) and diatomic molecules such as H₂⁺ and H₂ including nuclear isotopic substitution studies with deuterium and tritium, as well as electronic substitutions with the muon particle. Preliminary testing for triatomic molecular functionals using a model potential is also included in this dissertation. It has been concluded that using all-particle ECGs with including the addition of nonzero angular momentum functions to describe nonzero angular momentum states is sufficient in determining the energies of these states for both the atomic and molecular case.
|
Page generated in 0.0324 seconds