• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 16
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 19
  • 19
  • 19
  • 16
  • 16
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms

Carter, Jeffrey David January 2013 (has links)
This thesis reports experimental observations of electric fields using Rydberg atoms, including dc field measurements near the surface of an atom chip, and demonstration of measurement techniques for ac fields far from the surface. Associated theoretical results are also presented, including Monte Carlo simulations of the decoherence of Rydberg states in electric field noise as well as an analytical calculation of the statistics of dc electric field inhomogeneity near polycrystalline metal surfaces. DC electric fields were measured near the heterogeneous metal and dielectric surface of an atom chip using optical spectroscopy on cold atoms released from the trapping potential. The fields were attributed to charges accumulating in the dielectric gaps between the wires on the chip surface. The field magnitude and direction depend on the details of the dc biasing of the chip wires, suggesting that fields may be minimized with appropriate biasing. Techniques to measure ac electric fields were demonstrated far from the chip surface, using the decay of a coherent superposition of two Rydberg states of cold atoms. We have used the decay of coherent Rabi oscillations to place some bounds on the magnitude and frequency dependence of ac field noise. The rate of decoherence of a superposition of two Rydberg states was calculated with Monte Carlo simulations. The states were assumed to have quadratic Stark shifts and the power spectrum of the electric field noise was assumed to have a power-law dependence of the form 1/f^κ. The decay is exponential at long times for both free evolution of the superposition and and Hahn spin-echo sequences with a π refocusing pulse applied to eliminate the effects of low-frequency field noise. This decay time may be used to calculate the magnitude of the field noise if κ is known. The dc field inhomogeneity near polycrystalline metal surfaces due to patch potentials on the surface has been calculated, and the rms field scales with distance to the surface as 1/z^2. For typical evaporated metal surfaces the magnitude of the rms field is comparable to the image field of an elementary charge near the surface.
2

Observation of Resonant Electric Dipole-Dipole Interactions Between Cold Rydberg Atoms Using Microwave Spectroscopy

Afrousheh, Kourosh January 2006 (has links)
This thesis reports the first observation of the resonant electric dipole-dipole interaction between cold Rydberg atoms using microwave spectroscopy, the observation of the magnetic field suppression of resonant interactions, and the development of a unique technique for precise magnetic field measurements. <br /><br /> A Rydberg state 46<em>d</em><sub>5/2</sub> of laser cooled <sup>85</sup>Rb atoms has been optically excited. A fraction of these atoms has been transferred to another Rydberg state 47<em>p</em><sub>3/2</sub> or 45<em>f</em><sub>5/2,7/2</sub> to introduce resonant electric dipole-dipole interactions. The line broadening of the two-photon 46<em>d</em><sub>5/2</sub>-47<em>d</em><sub>5/2</sub> microwave transition due to the interaction of 46<em>d</em><sub>5/2</sub> with 47<em>p</em><sub>3/2</sub> or 45<em>f</em><sub>5/2,7/2</sub> atoms has been used as a probe of the interatomic interactions. This experiment has been repeated with a DC magnetic field applied. The application of a weak magnetic field (&le;0. 6G) has reduced the line broadening due to the resonant electric dipole-dipole interaction, indicating that the interactions are suppressed by the field. Theoretical models have been developed that predict the energy shifts due to the resonant electric dipole-dipole interaction, and the suppression of interactions by magnetic fields. A novel technique for sensitive measurement of magnetic fields using the 34<em>s</em><sub>1/2</sub>-34<em>p</em><sub>1/2</sub> one-photon microwave transition has also been presented. Using this technique, it has been possible to calibrate magnetic fields in the magneto-optical trap (MOT) apparatus to less than 10mG, and put an upper bound of 17mG on any remaining field inhomogeneity.
3

Observation of Resonant Electric Dipole-Dipole Interactions Between Cold Rydberg Atoms Using Microwave Spectroscopy

Afrousheh, Kourosh January 2006 (has links)
This thesis reports the first observation of the resonant electric dipole-dipole interaction between cold Rydberg atoms using microwave spectroscopy, the observation of the magnetic field suppression of resonant interactions, and the development of a unique technique for precise magnetic field measurements. <br /><br /> A Rydberg state 46<em>d</em><sub>5/2</sub> of laser cooled <sup>85</sup>Rb atoms has been optically excited. A fraction of these atoms has been transferred to another Rydberg state 47<em>p</em><sub>3/2</sub> or 45<em>f</em><sub>5/2,7/2</sub> to introduce resonant electric dipole-dipole interactions. The line broadening of the two-photon 46<em>d</em><sub>5/2</sub>-47<em>d</em><sub>5/2</sub> microwave transition due to the interaction of 46<em>d</em><sub>5/2</sub> with 47<em>p</em><sub>3/2</sub> or 45<em>f</em><sub>5/2,7/2</sub> atoms has been used as a probe of the interatomic interactions. This experiment has been repeated with a DC magnetic field applied. The application of a weak magnetic field (&le;0. 6G) has reduced the line broadening due to the resonant electric dipole-dipole interaction, indicating that the interactions are suppressed by the field. Theoretical models have been developed that predict the energy shifts due to the resonant electric dipole-dipole interaction, and the suppression of interactions by magnetic fields. A novel technique for sensitive measurement of magnetic fields using the 34<em>s</em><sub>1/2</sub>-34<em>p</em><sub>1/2</sub> one-photon microwave transition has also been presented. Using this technique, it has been possible to calibrate magnetic fields in the magneto-optical trap (MOT) apparatus to less than 10mG, and put an upper bound of 17mG on any remaining field inhomogeneity.
4

ENHANCEMENT OF RYDBERG ATOM INTERACTIONS USING DC AND AC STARK SHIFTS

Bohlouli-Zanjani, Parisa January 2010 (has links)
This thesis reports the use of both dc and ac electric fi eld induced resonant energy transfer, RET, between cold Rydberg atoms as a useful tool for enhancement of interatomic interactions. A general technique for laser frequency stabilization and its suitability for Rydberg atom excitation is also demonstrated. RET between cold Rydberg atoms was used to determine Rydberg atom energy levels. The ⁸⁵Rb atoms are laser cooled and trapped in a magneto-optical trap. For energy level determination experiment, atoms were optically excited to 32d₅/₂ Rydberg states. The two-atom process 32d₅/₂ + 32d₅/₂ → 34p₃/₂+30g is resonant at an electric fi eld of approximately 0.3 V/cm through dipole dipole interaction. The experimentally observed resonant fi eld, together with the Stark map calculation is used to make a determination of the ⁸⁵Rb ng-series quantum defect to be ⵒg(n = 30) = 0.00405(6). The ac Stark eff ect was also used to induce RET between cold Rydberg atoms. When a 28.5 GHz dressing field was set at speci fic fi eld strengths, the two-atom dipole-dipole process 43d₅/₂ + 43d₅/₂ → 45p₃/₂ + 41f was dramatically enhanced, due to induced degeneracy of the initial and final states. This method for enhancing interactions is complementary to dc electric- field-induced RET, but has more flexibility due to the possibility of varying the applied frequency. At a dressing field of 28.5 GHz all of the participating levels (43d₅/₂, 45p₃/₂ and 41f) show signi cant shifts and these give a complicated series of resonances. An oscillating electric fi eld at 1.356 GHz was also used to promote the above RET process where the atoms are initially excited to the 43d₅/₂ Rydberg states. The ac fi eld strength was scanned to collect RET spectra. Di fferent resonances were observed for diff erent magnetic sublevels involved in the process. Compared to the higher dressing field frequency of 28.5 GHz, the choice of dressing frequency of 1.356 GHz, which is slightly blue detuned from the 41f - 41g transition, and structure of the spectra may be understood, by analogy with the dc field case.
5

ENHANCEMENT OF RYDBERG ATOM INTERACTIONS USING DC AND AC STARK SHIFTS

Bohlouli-Zanjani, Parisa January 2010 (has links)
This thesis reports the use of both dc and ac electric fi eld induced resonant energy transfer, RET, between cold Rydberg atoms as a useful tool for enhancement of interatomic interactions. A general technique for laser frequency stabilization and its suitability for Rydberg atom excitation is also demonstrated. RET between cold Rydberg atoms was used to determine Rydberg atom energy levels. The ⁸⁵Rb atoms are laser cooled and trapped in a magneto-optical trap. For energy level determination experiment, atoms were optically excited to 32d₅/₂ Rydberg states. The two-atom process 32d₅/₂ + 32d₅/₂ → 34p₃/₂+30g is resonant at an electric fi eld of approximately 0.3 V/cm through dipole dipole interaction. The experimentally observed resonant fi eld, together with the Stark map calculation is used to make a determination of the ⁸⁵Rb ng-series quantum defect to be ⵒg(n = 30) = 0.00405(6). The ac Stark eff ect was also used to induce RET between cold Rydberg atoms. When a 28.5 GHz dressing field was set at speci fic fi eld strengths, the two-atom dipole-dipole process 43d₅/₂ + 43d₅/₂ → 45p₃/₂ + 41f was dramatically enhanced, due to induced degeneracy of the initial and final states. This method for enhancing interactions is complementary to dc electric- field-induced RET, but has more flexibility due to the possibility of varying the applied frequency. At a dressing field of 28.5 GHz all of the participating levels (43d₅/₂, 45p₃/₂ and 41f) show signi cant shifts and these give a complicated series of resonances. An oscillating electric fi eld at 1.356 GHz was also used to promote the above RET process where the atoms are initially excited to the 43d₅/₂ Rydberg states. The ac fi eld strength was scanned to collect RET spectra. Di fferent resonances were observed for diff erent magnetic sublevels involved in the process. Compared to the higher dressing field frequency of 28.5 GHz, the choice of dressing frequency of 1.356 GHz, which is slightly blue detuned from the 41f - 41g transition, and structure of the spectra may be understood, by analogy with the dc field case.
6

Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms

Carter, Jeffrey David January 2013 (has links)
This thesis reports experimental observations of electric fields using Rydberg atoms, including dc field measurements near the surface of an atom chip, and demonstration of measurement techniques for ac fields far from the surface. Associated theoretical results are also presented, including Monte Carlo simulations of the decoherence of Rydberg states in electric field noise as well as an analytical calculation of the statistics of dc electric field inhomogeneity near polycrystalline metal surfaces. DC electric fields were measured near the heterogeneous metal and dielectric surface of an atom chip using optical spectroscopy on cold atoms released from the trapping potential. The fields were attributed to charges accumulating in the dielectric gaps between the wires on the chip surface. The field magnitude and direction depend on the details of the dc biasing of the chip wires, suggesting that fields may be minimized with appropriate biasing. Techniques to measure ac electric fields were demonstrated far from the chip surface, using the decay of a coherent superposition of two Rydberg states of cold atoms. We have used the decay of coherent Rabi oscillations to place some bounds on the magnitude and frequency dependence of ac field noise. The rate of decoherence of a superposition of two Rydberg states was calculated with Monte Carlo simulations. The states were assumed to have quadratic Stark shifts and the power spectrum of the electric field noise was assumed to have a power-law dependence of the form 1/f^κ. The decay is exponential at long times for both free evolution of the superposition and and Hahn spin-echo sequences with a π refocusing pulse applied to eliminate the effects of low-frequency field noise. This decay time may be used to calculate the magnitude of the field noise if κ is known. The dc field inhomogeneity near polycrystalline metal surfaces due to patch potentials on the surface has been calculated, and the rms field scales with distance to the surface as 1/z^2. For typical evaporated metal surfaces the magnitude of the rms field is comparable to the image field of an elementary charge near the surface.
7

Investigations of memory, entanglement, and long-range interactions using ultra-cold atoms

Dudin, Yaroslav 20 June 2012 (has links)
Long-term storage of quantum information has diverse applications in quantum information science. This work presents an experimental realization of quantum memories with lifetimes greater then 0.1 s. The memories are based on cold rubidium atoms confined in one-dimensional optical lattices. First realization of lattice-based quantum memory and entanglement between a light field and a spin wave is presented in Chapter II. Chapter III describes two different methods (two-photon and magnetic) of compensation for inhomogeneous differential light shifts between the memory levels due to optical trapping potentials, and demonstration of entanglement between a telecom-band light field and a light-shift compensated memory qubit. Highly excited Rydberg atoms present a unique platform for study of strongly correlated systems and quantum information, because of their enormous dipole moments and consequent strong, long-range interactions. In the experiment described in Chapter IV single collective Rydberg excitations are created in a cold atomic gas. After a variable storage period the excitations are converted into light. As the principal quantum number n of the Rydberg level is increased beyond ~ 70, no more than a single excitation is retrieved from the entire mesoscopic ensemble of atoms. In Chapter V, by spatially selective conversion of the spin wave into a light field, we demonstrate that Rydberg-level interactions create long-range correlations of collective atomic excitations. These results hold promise for studies of dynamics and disorder in many-body systems with tunable interactions and for scalable quantum information networks. Chapter VI presents initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom.
8

Rydberg ionisation into confined and discrete systems

Gibbard, Jemma January 2015 (has links)
The energy levels of a hydrogen Rydberg atom approaching a metallic structure are perturbed by the image-charge interaction with the surface. At small atom-surface separations surface ionisation of the Rydberg electron can occur, whereby the electron is transferred to a metal-localised state. In previous studies investigating surface ionisation at bulk metallic surfaces, this state has been part of a conduction band; however this thesis focuses on metallic and structured surfaces where the Rydberg electron transfers into a discrete image-state or hybrid 'well-image state'. The surface ionisation of hydrogen Rydberg atoms at a Cu(100) projected band-gap surface is investigated experimentally and theoretically. Experimentally, the surface ionisation of an incident beam of hydrogen Rydberg atoms is measured by extraction of the resulting ions. Resonance-enhanced charge transfer is seen for hydrogen Rydberg states that are degenerate with copper-localised image-states. A wavepacket propagation study shows that for on-resonance states the maximum in the surface-ionisation probability is shifted away from the surface by decreasing the collisional velocity. The discrete hybrid 'well-image states' localised along the surface normal of a thin-film change energy with thin-film thickness. The interaction of hydrogen Rydberg atoms with iron thin films deposited on an insulating substrate is investigated. The preference for electron penetration along the surface normal is seen by the resonance-enhancement of charge transfer at energies where the Rydberg state and well-image state are degenerate. By changing the thickness of the thin film, by in situ depositions, the energies of the well-image state are altered and the Rydberg n-values at which resonances occur, change. At a thickness of 30-monolayer the energetic spacings between the well-image states and the Rydberg states become comparable, and the single well-image state resolution is lost. A wavepacket-propagation study investigates the interaction of a nanoparticle and low-n hydrogen Rydberg atoms. The nanoparticle has a fully confined potential which at small radii yields well-spaced, fully discrete well-image states. Resonance-enhanced charge transfer occurs when the Rydberg state and the nanoparticle well-image state energy levels are degenerate. However, when there is poor energy matching between the nanoparticle well-image state and the Rydberg atom, no charge transfer is seen i.e. surface ionisation does not occur. Overall, the work presented here demonstrates the capability of Rydberg-surface studies to identify discrete, high-lying energy levels at specific surfaces.
9

Processos binários em átomos de Rydberg / Binary process in Rydberg atoms

Caliri, Lucas Larcher 21 December 2006 (has links)
O presente trabalho procura investigar alguns dos processos colisionais de átomos de Rydberg ultrafrios. Utilizando uma armadilha magneto-óptica (MOT), foi possível aprisionar átomos de 85Rb, um elemento alcalino metálico, numa região da ordem de lmn a temperaturas da ordem de poucas centenas de ?K, regime chamado de \"ultrafrio\" na literatura. Os átomos de 85Rb são então excitados para estados de alto número quântico principal, também chamados de estados de Rydberg, através de um laser pulsado. Nesses estados, os átomos apresentam propriedades exageradas devido ao tamanho da órbita do elétron de valência, sendo uma delas os potenciais de longo-alcance. Em nossos experimentos, após a excitação, são detectados átomos em estados vizinhos ao originalmente excitado, evidenciando a existência de transições. Como esses estados são muito próximos em energia, a presença de potenciais de longo alcance pode fazer a energia de um par de átomos de Rydberg no seu estado inicial ficar ressonante com a energia do mesmo par numa combinação de outros estados, tornando então possível transições para esses estados. Nosso estudo visa quantificar de certa forma essas observações, assim como estimar a importância do movimento desses átomos nas transições observadas. / This dissertation seeks to address some of the characteristics of collisional processes in ultracold Rydberg atoms. With a Maqneto-Optical Trap (MOT), we trapped a sample of 85Rb, an alkaline metal element, in a region of about lmm at a temperature of a few hundreds of ?K, known in the literature as the \"ultracold\" regime. The 85Rb atoms are then excited to high principal quantum number states, also known as Rydberg states, with a pulsed laser. In these states, the atoms present exaggerated properties due to the large valence electron orbit, such as long-range potentials in our experiments, after excitation, we have detected atoms in neighboring states to the originally excited state, an evidence of atomic transitions. Since these states have similar energy, the presence of long-range potentials can make the energy of a pair of atoms in the initial state be resonant with the energy of the same pair in a combination of different states, making it possible to have transitions to these nearby states. Our work tries to quantify these observations, as well as to gauge the role of atomic movement in these transitions.
10

Processos binários em átomos de Rydberg / Binary process in Rydberg atoms

Lucas Larcher Caliri 21 December 2006 (has links)
O presente trabalho procura investigar alguns dos processos colisionais de átomos de Rydberg ultrafrios. Utilizando uma armadilha magneto-óptica (MOT), foi possível aprisionar átomos de 85Rb, um elemento alcalino metálico, numa região da ordem de lmn a temperaturas da ordem de poucas centenas de ?K, regime chamado de \"ultrafrio\" na literatura. Os átomos de 85Rb são então excitados para estados de alto número quântico principal, também chamados de estados de Rydberg, através de um laser pulsado. Nesses estados, os átomos apresentam propriedades exageradas devido ao tamanho da órbita do elétron de valência, sendo uma delas os potenciais de longo-alcance. Em nossos experimentos, após a excitação, são detectados átomos em estados vizinhos ao originalmente excitado, evidenciando a existência de transições. Como esses estados são muito próximos em energia, a presença de potenciais de longo alcance pode fazer a energia de um par de átomos de Rydberg no seu estado inicial ficar ressonante com a energia do mesmo par numa combinação de outros estados, tornando então possível transições para esses estados. Nosso estudo visa quantificar de certa forma essas observações, assim como estimar a importância do movimento desses átomos nas transições observadas. / This dissertation seeks to address some of the characteristics of collisional processes in ultracold Rydberg atoms. With a Maqneto-Optical Trap (MOT), we trapped a sample of 85Rb, an alkaline metal element, in a region of about lmm at a temperature of a few hundreds of ?K, known in the literature as the \"ultracold\" regime. The 85Rb atoms are then excited to high principal quantum number states, also known as Rydberg states, with a pulsed laser. In these states, the atoms present exaggerated properties due to the large valence electron orbit, such as long-range potentials in our experiments, after excitation, we have detected atoms in neighboring states to the originally excited state, an evidence of atomic transitions. Since these states have similar energy, the presence of long-range potentials can make the energy of a pair of atoms in the initial state be resonant with the energy of the same pair in a combination of different states, making it possible to have transitions to these nearby states. Our work tries to quantify these observations, as well as to gauge the role of atomic movement in these transitions.

Page generated in 0.0394 seconds