Spelling suggestions: "subject:"säkerhetsverifiering"" "subject:"säkerhetscertiering""
1 |
Real Time Reachability Analysis for Marine VesselsGanesan, Sudakshin January 2018 (has links)
Safety verification of continuous dynamical systems require the computationof the reachable set. The reachable set comprises those states the systemcan reach at a specific point in time. The present work aims to compute thisreachable set for the marine vessel, in the presence of uncertainties in thedynamic modeling of the system and in the presence of external disturbancesin the form of wind, waves and currents. The reachable set can then be usedto check if the vessel collides with an obstacle. The dynamic model used isthat of a nonlinear maneuvering model for the marine vessel. The dynamicson the azipod actuators are also considered.Several methods are considered to solve the reachability problem for themarine vessel. The first method considered is that of the Hamilton JacobiReachability analysis, where a dynamic game between the control input andthe disturbance input is played. This results in a dynamic programmingproblem known as the Hamilton Jacobi Bellman Isaacs (HJBI) equation. Itis solved using the Level-Set method, but it suffers from the curse of dimensionality.The other method considered is the use of set-theoretic approach,where an over-approximation of the reachable set is computed, in the contextof safety verification. But on the downside, large sets of admissible controlyields highly over-approximated reachable sets, which cannot be usedIn order to overcome the disadvantages posed by the first two methods,emphasizing on the real-time computation, a third method is developed, wherea supervised classification algorithm is used to compute the reachable setboundary. The dataset required for the classification algorithm is computedby solving a 2 Point Boundary Value Optimal Control Problem for the marinevessel. The features for classification algorithm can be extended, so as toinclude the uncertainties and disturbances in the system. The computationtime is greatly reduced and the accuracy of the method is comparable to theexact reachable set computation. / Säkerhetsverifiering av kontinuerliga dynamiska system kräver beräkningav mängden av tillstånd som kan nås vid en specifik tidpunkt, givet dess initialtillstånd.Detta arbete fokuserar påatt bestämma denna mängd av nåbaratillstånd för ett marint fartyg under modellosäkerheter och externa störningari form av vind, vågor och strömmar. Den nåbara mängden av tillstånd användssedan för att kontrollera om fartyget riskerar att kollidera med hinder.Den dynamiska modell som används i våra studier är en icke-linjär modelldär även dynamiken hos azipod-ställdonen betraktas.Arbetet studerar flera metoder för att lösa problemet: en klassisk Hamilton-Jacobi nåbarhetsanalys, en mängd-teoretisk teknik, samt en ny metod baseradpåmaskininlärning. Numeriska simuleringsstudier bekräftar att den föreslagnamaskininlärningsmetoden är snabbare än de tvåalternativen.
|
Page generated in 0.0683 seconds